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Part 1: Introduction   
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“Non-CES Aggregators: A Guided Tour,” Matsuyama (ARE 2023) 
CES demand system has many knife-edge properties, which  
• help to make CES tractable. 
• make CES too restrictive for some applications. 
 
Many typically look for alternatives, e.g., linear-quadratic, 
translog, but these alternatives have their own limitations. 
 
Instead, relaxing just a few knife-edge properties, while keeping 
the rest,   
• creates many different classes of demand systems, depending 

on which properties to relax and which ones to keep. 
• CES is an intersection of these different classes. 
• They’re more flexible than CES without losing much of 

tractability of CES. 
 

Of course, which classes to use depend on your applications. 
 
ARE (2023) focused on applications of non-CES to inter-sectoral 
demand, with special emphasis on  
 Nonhomotheticity 
 Gross complementarity and Essentiality of goods and factors. 
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This Review focuses on applications of homothetic non-CES to demand for differentiated products within a 
monopolistic competitive (MC) industry. This necessitates some additional restrictions. 
 
• Endogenous range of inessential products 
Demand systems need to be well-defined even when some products are unavailable or not yet invented, allowing for 
innovation/endogenous entry/exit. 
 
• Gross substitutes: price elasticity of each product > 1 ↔ the revenue is decreasing in the price. 

To ensure that MC firms face strictly positive marginal revenue curve. 
 
Moreover, we restrict to 
• Continuum of differentiated products  
o To make product variety a continuous variable for tractability 
o To ensure that firms cannot affect the aggregate variables (unless they produce positive measure of products), to be 

consistent with the assumption of MC. 
 
• Symmetric Demand System to focus on heterogeneity on the supply side, such as 
o productivity difference a la Melitz (2003). 
o Differential market access based on different locations, as in most trade/spatial models. 
o pricing setting a la Calvo (1983). 
o technology diffusion causes some but not all MC firms to face competitive fringes a la Judd (1985).  

 
Note: Neither homotheticity nor symmetry are so restrictive, because one can always nest them into a nonhomothetic 
and/or asymmetric upper-tier demand system. 
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Organization of this review 
 
Part 1:  Introduction 
 
Part 2: Dixit-Stiglitz under CES: A Quick Refresher   
 
Part 3:  General Homothetic Symmetric Demand Systems 
 
Part 4:  Dixit-Stiglitz under General Homothetic Demand Systems 
 
Part 5: Homothetic Single Aggregator (H.S.A.) Demand System 
 
Part 6:  Dixit-Stiglitz under H.S.A. 
 
Part 7:  Melitz under H.S.A. 
 
Part 8: Other Forms of Firm Heterogeneity under H.S.A. 
 
Appendix 1:  H.S.A., HDIA and HIIA 
 
Appendix  2: Some Parametric Families under H.S.A. 
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2.1.  Symmetric CES Demand System over a continuum of products with gross substitutes 
We discuss CES in terms of demand for differentiated inputs, generated by a competitive industry that produces the 
output, using symmetric CES production function, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱), 
  
Production Function 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) = 𝑍𝑍 �� (𝑥𝑥𝜔𝜔)1−

1
𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

,𝜎𝜎 > 1 

𝑍𝑍 > 0: TFP.  𝐱𝐱 = {𝑥𝑥𝜔𝜔;𝑑𝑑 ∈ Ω}: the quantity vector of differentiated inputs. 
𝑑𝑑 ∈ Ω: the endogenous set of available differentiated input varieties; 𝑉𝑉 ≡ |Ω|. 
Given 𝐩𝐩 = {𝑝𝑝𝜔𝜔;𝑑𝑑 ∈ Ω}, the price vector, the competitive industry chooses 𝐱𝐱 to minimize the production cost.  

Unit Cost Function 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) ≡ min
𝐱𝐱
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑋𝑋(𝐱𝐱) ≥ 1� =

1
𝑍𝑍
�� (𝑝𝑝𝜔𝜔)1−𝜎𝜎𝑑𝑑𝑑𝑑
Ω

�

1
1−𝜎𝜎

 

Demand for 𝑑𝑑 𝑥𝑥𝜔𝜔 = �
𝑝𝑝𝜔𝜔

𝑍𝑍𝑃𝑃(𝐩𝐩)�
−𝜎𝜎 𝑋𝑋(𝐱𝐱)

𝑍𝑍
=

(𝑝𝑝𝜔𝜔)−𝜎𝜎

�𝑍𝑍𝑃𝑃(𝐩𝐩)�1−𝜎𝜎
𝐸𝐸 

Budget Shares of 𝑑𝑑 𝑠𝑠𝜔𝜔 ≡
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐸𝐸

= �
𝑝𝑝𝜔𝜔

𝑍𝑍𝑃𝑃(𝐩𝐩)�
1−𝜎𝜎

= �
𝑍𝑍𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)�

1−1𝜎𝜎
 

𝐸𝐸 ≡ 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐩𝐩𝐱𝐱: market size or the size of this industry, treated as given. 
Duality Principle: 𝑋𝑋(𝐱𝐱) can be recovered from 𝑃𝑃(𝐩𝐩). 

𝑋𝑋(𝐱𝐱) ≡ min
𝐩𝐩
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑃𝑃(𝐩𝐩) ≥ 1� = 𝑍𝑍 �� (𝑥𝑥𝜔𝜔)1−

1
𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

. 
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2.2. Dixit-Stiglitz Environment:  
 
One Primary Factor of Production: “Labor” taken as numeraire. 
 
A Continuum of Differentiated Intermediate Inputs:  
 
Each variety is produced from “labor” and supplied exclusively by a single firm. 
 
𝑑𝑑 ∈ Ω:  index of a differentiated product and the firm producing it.     
 
Symmetry of Intermediate Input Producing MC Firms:  
 
• The symmetric demand system: Their products enter symmetrically in the demand system.  

 
• Each firm needs to hire 𝐹𝐹 + 𝜓𝜓𝑥𝑥𝜔𝜔 units of labor to supply 𝑥𝑥𝜔𝜔 units of its own product. 

o 𝐹𝐹:  Fixed cost, a combination of  
 the entry/innovation cost to enter the market. 
 overhead cost to stay in the market. 

o 𝜓𝜓𝑥𝑥𝜔𝜔  variable labor cost of production, or “employment”; 𝜓𝜓: Marginal cost of production. 
 
Free-Entry (Zero Profit):  𝐹𝐹 = Π𝜔𝜔. Gross profit is just enough to cover the fix cost.  No excess profit. 
 

 Total Labor Demand = Market Size 𝐿𝐿 = 𝐩𝐩𝐱𝐱 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐸𝐸. 
I make no assumption how this sector interacts with the rest of the economy, except that 𝐸𝐸 is given by this sector. 
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2.3. Equilibrium: Dixit-Stiglitz under CES 
  
Pricing Behavior:  Max the gross profit, Π𝜔𝜔 = (𝑝𝑝𝜔𝜔 −  𝜓𝜓)𝑥𝑥𝜔𝜔  holding 𝑃𝑃(𝐩𝐩) & 𝐸𝐸, given. → 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑝𝑝𝜔𝜔 −  𝜓𝜓)(𝑝𝑝𝜔𝜔)−𝜎𝜎 . 

Lerner Formula: 𝑝𝑝𝜔𝜔 �1 −
1
𝜎𝜎
� = 𝜓𝜓 Equilibrium Price of 𝑑𝑑: 𝑝𝑝𝜔𝜔 ≡ 𝑝𝑝 = �

𝜎𝜎
𝜎𝜎 − 1

�𝜓𝜓 ≡ 𝜇𝜇𝜓𝜓 

𝜇𝜇:  the constant (and common) markup rate:   
Under CES, the pricing rule of each firm is independent of the prices set by other firms. Strategic independence!! 
 
Equilibrium is symmetric. 𝑝𝑝𝜔𝜔 = 𝑝𝑝; 𝑥𝑥𝜔𝜔 = 𝑥𝑥;  𝑟𝑟𝜔𝜔 = 𝑟𝑟 = 𝑝𝑝𝑥𝑥; 𝑝𝑝𝑥𝑥𝑉𝑉 = 𝐸𝐸; Π𝜔𝜔 ≡ Π = (𝑝𝑝 −  𝜓𝜓)𝑥𝑥 = 𝑝𝑝𝑥𝑥 𝜎𝜎⁄ = 𝐸𝐸 𝜎𝜎𝑉𝑉⁄ ,   
where 𝑉𝑉 = |Ω| is product variety = the mass of firms 
 
Free Entry-Zero Profit Condition: Π = 𝐹𝐹. 
Unique Equilibrium: 

𝑉𝑉𝑒𝑒𝑒𝑒 =
𝐸𝐸
𝜎𝜎𝐹𝐹

;           𝑝𝑝𝑒𝑒𝑒𝑒 = �
𝜎𝜎

𝜎𝜎 − 1
�𝜓𝜓 = 𝜇𝜇𝜓𝜓;          𝑥𝑥𝑒𝑒𝑒𝑒 =

(𝜎𝜎 − 1)𝐹𝐹
𝜓𝜓

=
𝐹𝐹

(𝜇𝜇 − 1)𝜓𝜓
 

 
2.4. Comparative Statics: 3 endogen. variables (𝑉𝑉𝑒𝑒𝑒𝑒,𝑝𝑝𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑒𝑒𝑒𝑒) ; 3 exogen. (𝐸𝐸,𝐹𝐹,𝜓𝜓). By denoting 𝑞𝑞� ≡ 𝜕𝜕 ln 𝑞𝑞 = 𝜕𝜕𝑞𝑞 𝑞𝑞⁄ ,  
 

𝑉𝑉𝑒𝑒𝑒𝑒� = 𝐸𝐸� − 𝐹𝐹�;  𝑝𝑝𝑒𝑒𝑒𝑒� = 𝜓𝜓�;  𝑥𝑥𝑒𝑒𝑒𝑒� = 𝐹𝐹� − 𝜓𝜓� 
 
Market Size Effect: 𝑝𝑝𝑒𝑒𝑒𝑒, 𝑥𝑥𝑒𝑒𝑒𝑒 independent of 𝐸𝐸 → All the adjustments at the extensive margin. 
Profit Share 1

𝜎𝜎
= 1 −

1
𝜇𝜇

 Production Cost Share 1
𝜇𝜇

= 1 −
1
𝜎𝜎

 Profit/Production 
Cost Ratio 

1
𝜎𝜎 − 1

=
𝜇𝜇
𝜎𝜎

 = 𝜇𝜇 − 1 

All independent of 𝐸𝐸 𝐹𝐹⁄  and 𝜓𝜓. 
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2.5. Optimality of the Equilibrium Allocation under CES. 
Imagine that the competitive industry could fully integrate and control all intermediate input producers.  Then,   

max𝑋𝑋(𝐱𝐱)  = max𝑍𝑍 �� (𝑥𝑥𝜔𝜔)1−
1
𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

    𝑠𝑠. 𝑡𝑡.   � 𝜓𝜓𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

+ 𝑉𝑉𝐹𝐹 ≤ 𝐸𝐸. 

The optimal allocation must satisfy 𝑥𝑥𝜔𝜔 = 𝑥𝑥 > 0 for 𝑑𝑑 ∈ Ω and 𝑥𝑥𝜔𝜔 = 0  for 𝑑𝑑 ∉ Ω. 

max
(𝜓𝜓𝜓𝜓+𝐹𝐹)𝑉𝑉≤𝐸𝐸

𝑉𝑉
𝜎𝜎

𝜎𝜎−1(𝑍𝑍𝑥𝑥) =
𝑍𝑍𝐹𝐹
𝜓𝜓

 max
𝑉𝑉

𝑉𝑉
1

𝜎𝜎−1 �
𝐸𝐸
𝐹𝐹
− 𝑉𝑉�  

 

Optimum Product Variety: 𝑉𝑉𝑜𝑜𝑜𝑜 =
𝐸𝐸
𝜎𝜎𝐹𝐹

. Optimum Quantity of 𝑑𝑑: 𝑥𝑥𝑜𝑜𝑜𝑜 =
(𝜎𝜎 − 1)𝐹𝐹

𝜓𝜓
 

  
Equilibrium is Optimal!.  
 
A prior, we expect that MC equilibrium would not be optimal due to the presence of two sources of externalities. 
 
• Negative externalities due to the business stealing effect: A firm, when it pays the fixed cost to create a variety, 

does not take into account the fact that it reduces demand for other products and their profits. Too Many Varieties 
• Positive externalities due to incomplete appropriability: A firm is motivated not by the social surplus, but by the 

profit, which is a fraction of the social surplus.   Too Little Varieties. 
 
Under CES, these two externalities happen to cancel out exactly.  Not robust, but this makes CES a useful benchmark.   
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Unfortunately, the logic behind this result is poorly understood.  
 
Fallacy #1. The equilibrium allocation is optimal because all the products are sold at the same markup rate, and hence 
the relative prices across varieties are not distorted. 
 
Easy to see why this intuition is false. If it were correct, then the equilibrium allocation would be optimal,  
 whenever all products were sold at the same markup rate; it would not have to be equal to σ (σ − 1)⁄ . 
 In the presence of the uniform sale taxation of intermediate inputs.   
 in any symmetric equilibrium. The demand system would not have to be CES.  

 
The intuition is incorrect, because the common markup rate merely ensures that the allocation across available varieties 
is not distorted; it does not ensure that the equilibrium incentive to create a variety is optimal. 
 
Fallacy #2. “The equilibrium allocation is optimal if and only if it is under CES.”   
 
Polar opposite of Fallacy #1.   
 
Of course,  
The optimality of the equilibrium under CES is not robust, because it must satisfy the knife-edge condition, as the two 
externalities must cancel out each other. 
 
But, 
CES is not unique in satisfying the knife-edge condition, as explained later. 
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Part 3: General Homothetic Demand Systems 
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Constant-Returns-to-Scale (CRS) Production Technologies: A General Case 
 
Homothetic demand systems for differentiated inputs generated by symmetric CRS production technology. 

CRS Production Function Unit Cost Function 
𝑋𝑋 = 𝑋𝑋(𝐱𝐱) ≡ min

𝐩𝐩
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑃𝑃(𝐩𝐩) ≥ 1� 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) ≡ min

𝐱𝐱
�𝐩𝐩𝐱𝐱 ≡ ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑Ω �𝑋𝑋(𝐱𝐱) ≥ 1� 

𝐱𝐱 = {𝑥𝑥𝜔𝜔;𝑑𝑑 ∈ Ω�}: the input quantity vector; 𝐩𝐩 = {𝑝𝑝𝜔𝜔;𝑑𝑑 ∈ Ω�}: the input price vector.  
Ω�, a continuum of all potential input varieties; Ω ⊂ Ω�, the set of available input varieties, with 𝑉𝑉 ≡ |Ω|. 
Ω�\Ω: the set of unavailable varieties, 𝑥𝑥𝜔𝜔 = 0 and 𝑝𝑝𝜔𝜔 = ∞ for 𝑑𝑑 ∈ Ω�\Ω. 
Inputs are inessential, i.e., Ω�\Ω ≠ ∅ doesn’t imply 𝑋𝑋(𝐱𝐱) = 0 ⟺ 𝑃𝑃(𝐩𝐩) = ∞. 

Duality Principle:  
Either 𝑋𝑋(𝐱𝐱) or 𝑃𝑃(𝐩𝐩) can be a primitive if linear homogeneity, monotonicity & strict quasi-concavity are satisfied. 
 
3.1. Demand Systems 

Demand Curve (from Shepherd’s Lemma) Inverse Demand Curve 

𝑥𝑥𝜔𝜔 =
𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝑋𝑋(𝐱𝐱) 𝑝𝑝𝜔𝜔 = 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑋𝑋(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

 

 
From Euler’s homogenous function theorem,  

𝐩𝐩𝐱𝐱 = � 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

= � 𝑝𝑝𝜔𝜔
𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

𝑋𝑋(𝐱𝐱)𝑑𝑑𝑑𝑑
Ω

= � 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑋𝑋(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

= 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐸𝐸. 

The value of inputs is equal to the total value of output under CRS. 
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Budget Share of 𝑑𝑑 ∈ Ω:   𝑠𝑠𝜔𝜔 ≡
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐸𝐸

=
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

≡ 𝑠𝑠(𝑝𝑝𝜔𝜔,𝐩𝐩) =
𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

≡ 𝑠𝑠∗(𝑥𝑥𝜔𝜔, 𝐱𝐱) 

 
Under general CRS, little restrictions on 𝑠𝑠𝜔𝜔 beyond homogeneity of degree zero in (𝑝𝑝𝜔𝜔,𝐩𝐩) or in (𝑥𝑥𝜔𝜔, 𝐱𝐱). → 𝑠𝑠𝜔𝜔 =
𝑠𝑠(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) = 𝑠𝑠∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ), depends on the whole price (quantity) distribution divided by its own price (quantity). 
 
Definition: Gross Substitutability 

𝜕𝜕 ln 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

< 0 ⟺
𝜕𝜕 ln 𝑠𝑠∗(𝑥𝑥𝜔𝜔;  𝐱𝐱)

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
> 0 

 
Price Elasticity of 
Demand for 𝑑𝑑 ∈ Ω   𝜁𝜁𝜔𝜔 ≡ −

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) ≡ 1 −
𝜕𝜕 ln 𝑠𝑠(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) ≡ �1 −
𝜕𝜕 ln 𝑠𝑠∗(𝑥𝑥𝜔𝜔;  𝐱𝐱)

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
�
−1

> 1. 

Under general CRS, little restrictions on 𝜁𝜁𝜔𝜔, beyond the homogeneity of degree zero in (𝑝𝑝𝜔𝜔,𝐩𝐩) or in (𝑥𝑥𝜔𝜔, 𝐱𝐱). → 𝜁𝜁𝜔𝜔 =
𝜁𝜁(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) = 𝜁𝜁∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ) =depends on the whole price (quantity) distribution divided by its own price (quantity). 
 

Definition: The 2nd Law of Demand 
𝜕𝜕 ln 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

> 0 ⟺
𝜕𝜕 ln 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱)

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
< 0. 

Clearly, CES does not satisfy the 2nd Law.   
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3.2. Substitutability and Love-for-Variety Measures 
 Unit Quantity Vector: 𝟏𝟏Ω ≡ {(1Ω)𝜔𝜔;𝑑𝑑 ∈ Ω�}, where (1Ω)𝜔𝜔 ≡ �1 for 𝑑𝑑 ∈

0 for 𝑑𝑑 ∈ ΩΩ�\Ω 

 Unit Price Vector: 𝟏𝟏Ω−1 ≡ ��1Ω−1�𝜔𝜔;𝑑𝑑 ∈ Ω��, where �1Ω−1�𝜔𝜔 ≡ �1 for 𝑑𝑑 ∈
∞ for 𝑑𝑑 ∈ ΩΩ�\Ω 

Note: ∫ (1Ω)𝜔𝜔𝑑𝑑𝑑𝑑Ω = ∫ �1Ω−1�𝜔𝜔𝑑𝑑𝑑𝑑Ω = |Ω| ≡ 𝑉𝑉.   At the symmetric patterns, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1 and 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω,  
𝑠𝑠𝜔𝜔 = 𝑠𝑠(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) = 𝑠𝑠∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ) = 𝑠𝑠�1,𝟏𝟏Ω−1� = 𝑠𝑠∗(1,𝟏𝟏Ω) = 1 𝑉𝑉⁄  

𝜁𝜁𝜔𝜔 = 𝜁𝜁(1,𝐩𝐩 𝑝𝑝𝜔𝜔⁄ ) = 𝜁𝜁∗(1, 𝐱𝐱 𝑥𝑥𝜔𝜔⁄ ) = 𝜁𝜁�1,𝟏𝟏Ω−1� = 𝜁𝜁∗(1,𝟏𝟏Ω) > 1 

Clearly, this depends only on 𝑉𝑉.  Thus, 

Definition: The substitutability measure across varieties is defined by 

 𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁�1;𝟏𝟏Ω−1� = 𝜁𝜁∗(1;𝟏𝟏Ω) > 1. 

We call 𝜎𝜎′(𝑉𝑉) > (<)0 the case of increasing (decreasing) substitutability.   

 

 

 
Alternatively, we can define the substitutability by the Allen-Uzawa elasticity of substitution btw 𝑑𝑑 and 𝑑𝑑′,
𝐴𝐴𝐸𝐸𝐴𝐴(𝑝𝑝𝜔𝜔, 𝑝𝑝𝜔𝜔′ ,𝐩𝐩), at the symmetric patterns, 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1.  It turns out that these definitions are equivalent because   

𝜎𝜎(𝑉𝑉) = 𝐴𝐴𝐸𝐸𝐴𝐴�𝑝𝑝, 𝑝𝑝,𝑝𝑝𝟏𝟏Ω−1� = 𝐴𝐴𝐸𝐸𝐴𝐴�1,1,𝟏𝟏Ω−1�. 

In general, the 2nd Law is neither sufficient nor necessary for 𝜎𝜎′(𝑉𝑉) > 0. 



©Kiminori Matsuyama, Homothetic Non-CES with Applications to MC 

Page 16 of 75 

Love-for-Variety Measure  Commonly defined by the productivity gain from a higher 𝑉𝑉, holding 𝑥𝑥𝑉𝑉  
 

    
𝑑𝑑 ln𝑋𝑋(𝐱𝐱)
𝑑𝑑 ln𝑉𝑉

�
𝐱𝐱=𝜓𝜓𝟏𝟏Ω,𝜓𝜓𝑉𝑉=𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐.

=     
𝑑𝑑 ln 𝑥𝑥𝑋𝑋(𝟏𝟏Ω)

𝑑𝑑 ln𝑉𝑉
�

 𝜓𝜓𝑉𝑉=𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐.
=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0 

Alternatively, LfV may be defined by the decline in 𝑃𝑃(𝐩𝐩) from a higher 𝑉𝑉, at 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1, holding 𝑝𝑝 constant. 

−  
𝑑𝑑 ln𝑃𝑃(𝐩𝐩)
𝑑𝑑 ln𝑉𝑉

�
𝐩𝐩=𝑜𝑜𝟏𝟏Ω

−1,   𝑜𝑜=𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐.
= −  

𝑑𝑑 ln𝑃𝑃�𝟏𝟏Ω−1�
𝑑𝑑 ln𝑉𝑉

> 0. 

Both are functions of 𝑉𝑉 only, and equivalent because, by applying 𝐱𝐱 = 𝑥𝑥𝟏𝟏Ω and 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1  to 𝐩𝐩𝐱𝐱 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱), 

𝑝𝑝𝑥𝑥𝑉𝑉 = 𝑝𝑝𝑃𝑃�𝟏𝟏Ω−1�𝑥𝑥𝑋𝑋(𝟏𝟏Ω) ⟹−  
𝑑𝑑 ln𝑃𝑃�𝟏𝟏Ω−1�
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0. 

Definition. The love-for-variety measure is defined by: 

 
 ℒ(𝑉𝑉) ≡ −  

𝑑𝑑 ln𝑃𝑃�𝟏𝟏Ω−1�
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0. 
 

 

 

Note: ℒ(𝑉𝑉) > 0 is guaranteed by the strict quasi-concavity. 
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Example: Back to Standard CES: 

𝑋𝑋(𝐱𝐱) = 𝑍𝑍 �� 𝑥𝑥𝜔𝜔
1−1𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

  ⟺    𝑃𝑃(𝐩𝐩) =
1
𝑍𝑍
�� 𝑝𝑝𝜔𝜔1−𝜎𝜎𝑑𝑑𝑑𝑑
Ω

�

1
1−𝜎𝜎

. 

 Definition Under CES 

Price Elasticity 
𝜁𝜁𝜔𝜔 ≡ −

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) = 𝜎𝜎 > 1 

Substitutability  𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁�1;𝟏𝟏Ω−1� = 𝜁𝜁∗(1;𝟏𝟏Ω) 𝜎𝜎(𝑉𝑉) = 𝜎𝜎 > 1 

Love-for-variety 
ℒ(𝑉𝑉) ≡ −  

𝑑𝑑 ln𝑃𝑃�𝟏𝟏Ω−1�
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0. ℒ(𝑉𝑉) =
1

𝜎𝜎 − 1
> 0. 

Under Standard CES,  
• Price elasticity of demand, 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), is independent of 𝐩𝐩 or 𝐱𝐱 and equal to 𝜎𝜎.  
• Substitutability,  𝜎𝜎(𝑉𝑉), is independent of 𝑉𝑉 and it is equal to 𝜎𝜎. 
• Love-for-variety, ℒ(𝑉𝑉), is independent of 𝑉𝑉 and ℒ(𝑉𝑉) = ℒ = 1 (𝜎𝜎 − 1)⁄ . 

Fallacy #3: 𝜎𝜎(𝑉𝑉) is constant only under CES. 
Fallacy #4: 𝜎𝜎′(𝑉𝑉) > (<)0 iff the 2nd law (anti-2nd law) holds.  
Fallacy #5: 𝜎𝜎(𝑉𝑉) is an inverse measure of love-for-variety, ℒ(𝑉𝑉). 
These statements may be true under some subclasses of homothetic symmetric demand systems, but not true in general. 
See the following (counter)example.  
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Example: Generalized CES with Gross Substitutes a la Benassy (1996). 

𝑋𝑋(𝐱𝐱) = 𝑍𝑍(𝑉𝑉) �� 𝑥𝑥𝜔𝜔
1−1𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

  ⟺    𝑃𝑃(𝐩𝐩) =
1

𝑍𝑍(𝑉𝑉)
�� 𝑝𝑝𝜔𝜔1−𝜎𝜎𝑑𝑑𝑑𝑑
Ω

�

1
1−𝜎𝜎

, 

 
Note: 𝑍𝑍(𝑉𝑉) allows variety to have direct externalities to TFP (or affinity) 
 Definition Under Generalized CES 

Price Elasticity 
𝜁𝜁𝜔𝜔 ≡ −

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) = 𝜎𝜎 > 1 

Substitutability  𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁�1;𝟏𝟏Ω−1� = 𝜁𝜁∗(1;𝟏𝟏Ω) 𝜎𝜎(𝑉𝑉) = 𝜎𝜎 > 1 

Love-for-variety 
ℒ(𝑉𝑉) ≡  

𝑑𝑑 ln𝑃𝑃�𝟏𝟏Ω−1�
𝑑𝑑 ln𝑉𝑉

=
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 > 0. ℒ(𝑉𝑉) =
1

𝜎𝜎 − 1
+
𝑑𝑑 ln𝑍𝑍(𝑉𝑉)
𝑑𝑑 ln𝑉𝑉

. 

Under Generalized CES,  
• Price Elasticity, 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), and Substitutability, 𝜎𝜎(𝑉𝑉), are not affected by 𝑑𝑑 ln𝑍𝑍(𝑉𝑉)

𝑑𝑑 ln𝑉𝑉
. 

• 𝑑𝑑 ln𝑍𝑍(𝑉𝑉)
𝑑𝑑 ln𝑉𝑉

, the Benassy residual, “accounts for” the discrepancy between the LV implied by CES and the observed LV. 

o Benassy (1996) set 𝑑𝑑 ln𝑍𝑍(𝑉𝑉)
𝑑𝑑 ln𝑉𝑉

= 𝜈𝜈 − 1
𝜎𝜎−1

 , so that ℒ(𝑉𝑉) = 𝜈𝜈 is a separate parameter independent of 𝜎𝜎. 

o If we instead assume that 𝑑𝑑 ln𝑍𝑍(𝑉𝑉)
𝑑𝑑 ln𝑉𝑉

 is independent of 𝜎𝜎, ℒ(𝑉𝑉) is still inversely related to 𝜎𝜎. 
Even if you believe in the Benassy residual, your estimate of its magnitude depends on the CES structure. 
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(Counter)Example: Weighted Geometric Mean of CES: 
 

𝑋𝑋(𝐱𝐱) ≡ 𝑍𝑍 exp �� ln𝑋𝑋(𝐱𝐱;𝜎𝜎)𝑑𝑑𝐹𝐹(𝜎𝜎)
∞

1
�, 

where 𝐹𝐹(⋅) is a cdf of 𝜎𝜎 ∈ (1,∞), satisfying ∫ 𝑑𝑑𝐹𝐹(𝜎𝜎)∞
1 = 1, and 𝑋𝑋(𝐱𝐱;𝜎𝜎) is the standard CES,  

[𝑋𝑋(𝐱𝐱;𝜎𝜎)]1−
1
𝜎𝜎 ≡ � 𝑥𝑥𝜔𝜔

1−1𝜎𝜎
Ω

𝑑𝑑𝑑𝑑 

 Definition Under Weighted Geometric Mean of CES 

Price Elasticity 
𝜁𝜁𝜔𝜔 ≡ −

𝜕𝜕 ln 𝑥𝑥𝜔𝜔
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) = 𝐸𝐸𝐹𝐹 �(𝑥𝑥𝜔𝜔)−
1
𝜎𝜎 �𝑋𝑋(𝐱𝐱;𝜎𝜎)�1−

1
𝜎𝜎� � 𝐸𝐸𝐹𝐹 �(𝑥𝑥𝜔𝜔)−

1
𝜎𝜎 𝜎𝜎�𝑋𝑋(𝐱𝐱;𝜎𝜎)�1−

1
𝜎𝜎� �� > 1 

Substitutability  𝜎𝜎(𝑉𝑉) ≡ 𝜁𝜁∗(1;𝟏𝟏Ω) 𝜎𝜎(𝑉𝑉) =
1

𝐸𝐸𝐹𝐹(1 𝜎𝜎⁄ ) > 1 

Love-for-variety ℒ(𝑉𝑉) ≡
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉 − 1 > 0 ℒ(𝑉𝑉) = 𝐸𝐸𝐹𝐹 �

1
𝜎𝜎 − 1�

> 0 

• Price elasticity of demand, 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), is not constant, and violates the 2nd Law. 
• Both 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) are independent of 𝑉𝑉. 
• The range of 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) is 0 < 1

𝜎𝜎(𝑉𝑉)−1
≤ ℒ(𝑉𝑉) < ∞, where the equality holds iff 𝐹𝐹 is degenerate.  

• Easy to construct a parametric family of 𝐹𝐹, such that 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) are positively related. 
 
In general, homotheticity imposes little restrictions on the relation btw 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), 𝜎𝜎(𝑉𝑉), & ℒ(𝑉𝑉). 
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Part 4: Dixit-Stiglitz under General Homothetic Demand Systems 
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Fallacy #6.  With the symmetric firms, the equilibrium is symmetric.   
• The symmetry of the environment ensures the set of equilibrium is symmetric, not the symmetry of an equilibrium. 
• Even if the symmetric equilibrium exists, it may co-exist with a symmetric set of asymmetric equilibriums.  
• There may be multiple symmetric equilibriums. 
 
4.1. Symmetric Equilibrium: Suppose that it exists. In such an equilibrium, the price elasticity is 𝜎𝜎(𝑉𝑉).  Hence, 
Lerner Pricing Formula 𝑝𝑝 �1 −

1
𝜎𝜎(𝑉𝑉)� = 𝜓𝜓 

Markup Rate 
𝜇𝜇(𝑉𝑉) ≡

𝜎𝜎(𝑉𝑉)
𝜎𝜎(𝑉𝑉) − 1

  

with 1
𝜎𝜎(𝑉𝑉) + 1

𝜇𝜇(𝑉𝑉) = 1 and  1
𝜎𝜎(𝑉𝑉)−1

= 𝜇𝜇(𝑉𝑉)
𝜎𝜎(𝑉𝑉) = 𝜇𝜇(𝑉𝑉) − 1. 

Maximized Gross Profit Π = (𝑝𝑝 − 𝜓𝜓)𝑥𝑥 =
𝑝𝑝𝑥𝑥
𝜎𝜎(𝑉𝑉) =

𝐸𝐸
𝜎𝜎(𝑉𝑉) 

Free Entry-Zero Profit Condition Π = 𝐹𝐹 

Equilibrium Product Variety 𝑉𝑉𝑒𝑒𝑒𝑒𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) =
𝐸𝐸
𝐹𝐹

 

The uniqueness requires that 𝑉𝑉𝜎𝜎(𝑉𝑉) is globally increasing in 𝑉𝑉.  
Increasing substitutability  𝜎𝜎′(𝑉𝑉) > 0 ↔Procompetitive entry, 𝜇𝜇′(𝑉𝑉) < 0, is sufficient but not necessary.  
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4.2. Comparative Statics: Let ℰ𝑓𝑓(𝑥𝑥) ≡ 𝑥𝑥𝑓𝑓′(𝑥𝑥) 𝑓𝑓(𝑥𝑥)⁄ = 𝜕𝜕 ln 𝑓𝑓(𝑥𝑥) 𝜕𝜕 ln 𝑥𝑥⁄   the elasticity of 𝑓𝑓(𝑥𝑥) > 0, w.r.t. 𝑥𝑥 > 0. 

𝑉𝑉𝑒𝑒𝑒𝑒� =
𝐸𝐸� − 𝐹𝐹�

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ;   𝑝𝑝𝑒𝑒𝑒𝑒� =
ℰ𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)�𝐸𝐸� − 𝐹𝐹��

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) + 𝜓𝜓�;    𝑥𝑥𝑒𝑒𝑒𝑒� =
𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)�𝐸𝐸� − 𝐹𝐹��

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) + 𝐹𝐹� − 𝜓𝜓�. 

 
Market Size Effect: for ℰ𝜎𝜎(𝑉𝑉) ⋛ 0 ⟺ ℰ𝜇𝜇(𝑉𝑉) ⋚ 0, 
 

0 <
𝜕𝜕 ln𝑉𝑉𝑒𝑒𝑒𝑒

𝜕𝜕 ln𝐸𝐸
= 1 −

𝜕𝜕 ln(𝑝𝑝𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒)
𝜕𝜕 ln𝐸𝐸

=
1

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋚ 1; 
𝜕𝜕 ln𝑝𝑝𝑒𝑒𝑒𝑒

𝜕𝜕 ln𝐸𝐸
=

ℰ𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)
1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋚ 0;  

𝜕𝜕 ln 𝑥𝑥𝑒𝑒𝑒𝑒

𝜕𝜕 ln𝐸𝐸
=
𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋛ 0 

 
and the profit/production cost ratio changes as  

𝜕𝜕 ln(𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) 𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)⁄ )
𝜕𝜕 ln𝐸𝐸

=
ℰ𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) − ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)

1 + ℰ𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) ⋚ 0. 

 
Under increasing substitutability ↔pro-competitive entry, ℰ𝜎𝜎(𝑉𝑉) > 0 ⟺ ℰ𝜇𝜇(𝑉𝑉) < 0, 
• A large market size causes more firms to enter. 
• If increasing product variety makes the products more substitutable, the markup rate goes down.   
• The firms needs to expand and increases its revenue just to break-even. 
• As each firm becomes larger/each product sold more, the mass of product variety up at a lower rate than market size. 
• The profit/production cost ratio goes down. 
 
Note: What is crucial for these results is procompetitive entry, not the 2nd Law. 
Fallacy #4, which can now be restated as “Entry is procompetitive iff the 2nd law holds.” 
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4.3. Optimum under General Homothetic Demand System. 

max𝑋𝑋(𝐱𝐱)     𝑠𝑠. 𝑡𝑡.   � 𝜓𝜓𝑥𝑥𝜔𝜔𝑑𝑑𝑑𝑑
Ω

+ 𝑉𝑉𝐹𝐹 ≤ 𝐸𝐸. 

 
The solution satisfies 𝑥𝑥𝜔𝜔 = 𝑥𝑥 > 0  for 𝑑𝑑 ∈ Ω and 𝑥𝑥𝜔𝜔 = 0  for 𝑑𝑑 ∉ Ω.  Thus,  

max𝑋𝑋(𝐱𝐱) =  max
𝑉𝑉(𝜓𝜓𝜓𝜓+𝐹𝐹)≤𝐸𝐸

𝑥𝑥𝑋𝑋(𝟏𝟏Ω) =
𝐹𝐹
𝜓𝜓

max
𝑉𝑉

𝑋𝑋(𝟏𝟏Ω)
𝑉𝑉

�
𝐸𝐸
𝐹𝐹
− 𝑉𝑉�. 

FOC: 
𝑑𝑑 ln𝑋𝑋(𝟏𝟏Ω)
𝑑𝑑 ln𝑉𝑉

− 1 +
𝑑𝑑 ln(𝐸𝐸 𝐹𝐹⁄ − 𝑉𝑉)

𝑑𝑑 ln𝑉𝑉
= ℒ(𝑉𝑉) −

𝑉𝑉
𝐸𝐸 𝐹𝐹⁄ − 𝑉𝑉

= 0,  

⟹   �1 +
1

ℒ(𝑉𝑉𝑜𝑜𝑜𝑜)� 𝑉𝑉
𝑜𝑜𝑜𝑜 =

𝐸𝐸
𝐹𝐹

. 

 

This FOC fully characterizes the optimal variety for each 𝐿𝐿 𝐹𝐹⁄  if LHS is strictly increasing in 𝑉𝑉𝑂𝑂.  Thus, 

ℰℒ(𝑉𝑉) < 1 + ℒ(𝑉𝑉). 

 

Diminishing love-for-variety, ℒ′(𝑉𝑉) < 0 ⟺ ℰℒ(𝑉𝑉) < 0, is sufficient but not necessary. 
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4.4. Optimal vs. Equilibrium: 

�1 +
1

ℒ(𝑉𝑉𝑜𝑜𝑜𝑜)� 𝑉𝑉
𝑜𝑜𝑜𝑜 =

𝐸𝐸
𝐹𝐹

;   𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)𝑉𝑉𝑒𝑒𝑒𝑒 = �1 +
𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)
𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)� 𝑉𝑉

𝑒𝑒𝑒𝑒 =
𝐸𝐸
𝐹𝐹

, 

with the LHS of each condition is strictly increasing in 𝑉𝑉𝑜𝑜𝑜𝑜 and in 𝑉𝑉𝑒𝑒𝑒𝑒 respectively.  Thus,  
 
Proposition 1.  Assume that the symmetric equilibrium exists uniquely in the Dixit-Stiglitz environment under 
general homothetic symmetric demand systems. Then,  

ℒ(𝑉𝑉) ⋛
𝜇𝜇(𝑉𝑉)
𝜎𝜎(𝑉𝑉) =

1
𝜎𝜎(𝑉𝑉) − 1

 for all 𝑉𝑉 > 0 ⟺ 𝑉𝑉𝑒𝑒𝑒𝑒 ⋚ 𝑉𝑉𝑜𝑜𝑜𝑜 for all𝐸𝐸 𝐹𝐹⁄ > 0. 

SOCIAL incentive for additional product variety: ℒ(𝑉𝑉) 

 

PRIVATE incentive for additional product variety: 

1
𝜎𝜎(𝑉𝑉) − 1

=
𝜇𝜇(𝑉𝑉)
𝜎𝜎(𝑉𝑉) = 𝜇𝜇(𝑉𝑉) − 1 =

Π
𝜓𝜓𝑥𝑥

 

The Optimality Condition:  ℒ(𝑉𝑉)[𝜎𝜎(𝑉𝑉) − 1] = 1. 

The optimality requires the knife-edge condition, not satisfied by almost all homothetic demand systems. 
• For some classes of homothetic DSs, 𝑉𝑉𝑒𝑒𝑒𝑒 < 𝑉𝑉𝑜𝑜𝑜𝑜 for all𝐸𝐸 𝐹𝐹⁄ > 0; e.g., the geometric means of CES. 
• For some classes of homothetic DSs, 𝑉𝑉𝑒𝑒𝑒𝑒 > 𝑉𝑉𝑜𝑜𝑜𝑜 for all𝐸𝐸 𝐹𝐹⁄ > 0; see below. 
• There are also borderline classes of homothetic DS for which 𝑉𝑉𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑜𝑜𝑜𝑜 for all𝐸𝐸 𝐹𝐹⁄ > 0.  

CES is one of them, but not the only one. If Fallacy #2 were true, then ℒ(𝑉𝑉)[𝜎𝜎(𝑉𝑉) − 1] = 1 holds iff CES.  
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In general, one can say little about the relation btw 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱), 𝜎𝜎(𝑉𝑉), & ℒ(𝑉𝑉). 
• Whether the 2nd Law holds or not says little about the derivatives of 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉). 
• 𝜎𝜎(𝑉𝑉) and ℒ(𝑉𝑉) may not be inversely related. Instead, they could be positively related. 
 
Yet, one may think, intuitively, that, as input varieties are more substitutable, 
• the price elasticity of demand for each variety become larger, 
• the love-for-variety measure become smaller.   
One may also think, intuitively. That the 2nd Law could be tightly 
connected to procompetitive entry. 
 
Homotheticity alone cannot capture this intuition!!  Too broad. 
 
In search for the additional restrictions to capture this intuition, and 
to ensure the uniqueness of the equilibrium, we turn to  
 
Homothetic Single Aggregator (H.S.A.) for the remainder. 
 
Appendix A also discusses  
Homothetic Direct Implicit Additivity (HDIA) 
Homothetic Indirect Implicit Additivity (HIIA) 
 
The three are pair-wise disjoint with the sole exception of CES. 



©Kiminori Matsuyama, Homothetic Non-CES with Applications to MC 

Page 26 of 75 

 
 
 

 
 
 
 

 
 

Part 5: Homothetic Single Aggregator (H.S.A.) Demand Systems 
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5.1.  Symmetric H.S.A. (Homothetic Single Aggregator) DS with Gross Substitutes 
 
Definition: A symmetric CRS technology, 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) is called homothetic single aggregator (H.S.A.) if the budget 
share of 𝑑𝑑 depends solely on a single variable, 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴⁄ ,  its own price 𝑝𝑝𝜔𝜔, normalized by the common price 
aggregator, 𝐴𝐴 = 𝐴𝐴(𝐩𝐩). 

𝑠𝑠𝜔𝜔 ≡
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐩𝐩𝐱𝐱

=
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�, 

where 
� 𝑠𝑠 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω

 ≡ 1. 
 

• 𝑠𝑠:ℝ++ → ℝ+: the budget share function, decreasing in the normalized price, 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴⁄  for 𝑠𝑠(𝑧𝑧𝜔𝜔) > 0 with 
o lim𝑧𝑧→�̅�𝑧𝑠𝑠(𝑧𝑧) = 0. If 𝑧𝑧̅ ≡ inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0} < ∞, 𝑧𝑧̅𝐴𝐴(𝐩𝐩) is the choke price. 

• 𝐴𝐴 = 𝐴𝐴(𝐩𝐩): the common price aggregator, defined implicitly by the adding-up constraint, ∫ 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑Ω  ≡ 1. 
By construction, the budget shares add up to one. 𝐴𝐴(𝐩𝐩) linear homogenous in 𝐩𝐩 for a fixed Ω. A larger Ω reduces 𝐴𝐴(𝐩𝐩). 
 

 
Some Special Cases 
 

CES with gross substitutes 
 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎; 𝜎𝜎 > 1 

Translog Cost Function 𝑠𝑠(𝑧𝑧) = 𝛾𝛾max{− ln(𝑧𝑧 𝑧𝑧̅⁄ ) , 0} ; 𝑧𝑧̅ < ∞ 
 

Constant Pass Through 
(CoPaTh) 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾max��𝜎𝜎 − (𝜎𝜎 − 1)𝑧𝑧
1−𝜌𝜌
𝜌𝜌 �

𝜌𝜌
1−𝜌𝜌

, 0� 
 
𝜎𝜎 > 1;  0 < 𝜌𝜌 < 1 

 
   As 𝜌𝜌 ↗ 1, CoPaTh converges to CES with 𝑧𝑧̅ = � 𝜎𝜎

𝜎𝜎−1
�

𝜌𝜌
1−𝜌𝜌 → ∞. 
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Price Elasticity: 
 𝜁𝜁𝜔𝜔 = 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) = 1 −

𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)
𝑠𝑠(𝑧𝑧𝜔𝜔) ≡ 𝜁𝜁(𝑧𝑧𝜔𝜔) > 1 

 
• A function of a single variable, the normalized price, 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ≤ 𝑧𝑧̅.   
 
• 𝜁𝜁(𝑧𝑧𝜔𝜔) = 𝜎𝜎 > 1 under CES, 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 .   
 
• The 2nd law iff 𝜁𝜁′(⋅) > 0.  For example, 
  

Translog: 𝜁𝜁(𝑧𝑧𝜔𝜔) = 1 −
1

ln(𝑧𝑧𝜔𝜔 𝑧𝑧̅⁄ ) 

CoPaTh: 
𝜁𝜁(𝑧𝑧𝜔𝜔) =

𝜎𝜎
𝜎𝜎 − (𝜎𝜎 − 1)𝑧𝑧𝜔𝜔(1−𝜌𝜌) 𝜌𝜌⁄ =

1
1 − (𝑧𝑧𝜔𝜔 𝑧𝑧̅⁄ )(1−𝜌𝜌) 𝜌𝜌⁄ ;   𝑧𝑧̅ = �

𝜎𝜎
𝜎𝜎 − 1

�
𝜌𝜌

1−𝜌𝜌 

 
• From any 𝜁𝜁(⋅) > 1, satisfying lim

 𝑧𝑧→�̅�𝑧
𝜁𝜁(𝑧𝑧) = ∞, if 𝑧𝑧̅ < ∞, one can reverse-engineer  

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 exp ��
1 − 𝜁𝜁(𝜉𝜉)

𝜉𝜉
𝑑𝑑𝜉𝜉

𝑧𝑧

𝑧𝑧0
�. 

This can be useful for those who want to estimate H.S.A. demand systems nonparametrically. 
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Unit Cost Function: By integrating 𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln𝑜𝑜𝜔𝜔

= 𝑠𝑠 � 𝑜𝑜𝜔𝜔
𝐴𝐴(𝐩𝐩)�,  

 

𝑐𝑐𝑃𝑃(𝐩𝐩) = 𝐴𝐴(𝐩𝐩) exp �− � 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�Φ�

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑

Ω

� ,    where  Φ(𝑧𝑧) ≡
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉 > 0
�̅�𝑧

𝑧𝑧

. 

 
• 𝑐𝑐 > 0 is a constant, proportional to TFP. 
 
• Φ(𝑧𝑧𝜔𝜔): the productivity gain from a product sold at 𝑧𝑧𝜔𝜔 = 𝑝𝑝𝜔𝜔 𝐴𝐴⁄ . 
 

• 𝑃𝑃(𝐩𝐩): linear homogeneous, monotonic, & strictly quasi-concave, ensuring the integrability of H.S.A.   
[Our 2017 paper proved the integrability, iff 𝜁𝜁(𝑧𝑧) ≡ 1 − 𝑑𝑑 ln 𝑐𝑐(𝑧𝑧)

𝑑𝑑 ln 𝑧𝑧
> 0, clearly satisfied here.] 

• 𝐴𝐴(𝐩𝐩) 𝑃𝑃(𝐩𝐩)⁄  is not constant and depends on 𝐩𝐩, with the sole exception of CES, because 
𝜕𝜕 ln𝐴𝐴(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

=
𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)

∫ 𝑠𝑠′(𝑧𝑧𝜔𝜔′)𝑧𝑧𝜔𝜔′𝑑𝑑𝑑𝑑′
Ω

=
[𝜁𝜁(𝑧𝑧𝜔𝜔) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔)

∫ [𝜁𝜁(𝑧𝑧𝜔𝜔′) − 1]𝑠𝑠(𝑧𝑧𝜔𝜔′)𝑑𝑑𝑑𝑑′
Ω

≠
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝑠𝑠(𝑧𝑧𝜔𝜔), 

unless 𝜁𝜁(𝑧𝑧) is independent of 𝑧𝑧 as 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 > 1 ⟺ 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 ⟺ Φ(𝑧𝑧) = 1 (𝜎𝜎 − 1)⁄ > 0. 
 𝐴𝐴(𝐩𝐩), the inverse measure of competitive pressures, captures cross price effects in DS.  
 𝑃𝑃(𝐩𝐩), the inverse measure of TFP, captures the productivity consequences of price changes. 

 
Fallacy #7; 𝑠𝑠𝜔𝜔 = 𝑓𝑓(𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ ), with 𝑓𝑓′(∙) < 0 defines the class of flexible homothetic demand systems, which contains 
CES as a special case, where 𝑠𝑠𝜔𝜔 ∝ (𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ )1−𝜎𝜎 . 
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5.2.  Substitutability and Love-for Variety under H.S.A.   At 𝐩𝐩 = 𝑝𝑝𝟏𝟏Ω−1,   

𝑠𝑠(𝑧𝑧)𝑉𝑉 == 𝑠𝑠 �
𝑝𝑝

𝐴𝐴(𝑝𝑝𝟏𝟏Ω−1)�𝑉𝑉 = 𝑠𝑠 �
1

𝐴𝐴(𝟏𝟏Ω−1)�𝑉𝑉 = 1 ⟺ 𝑧𝑧 =
1

𝐴𝐴(𝟏𝟏Ω−1) = 𝑠𝑠−1 �
1
𝑉𝑉
�. 

1
𝑃𝑃(𝟏𝟏Ω−1) =

1
𝐴𝐴(𝟏𝟏Ω−1)

𝐴𝐴�𝟏𝟏Ω−1�
𝑃𝑃(𝟏𝟏Ω−1) = 𝑐𝑐𝑠𝑠−1 �

1
𝑉𝑉
� exp �Φ�𝑠𝑠−1 �

1
𝑉𝑉
���, 

from which, 
Proposition 2:  Under H.S.A.,  

𝜎𝜎(𝑉𝑉) = 𝜁𝜁 �
1

𝐴𝐴(𝟏𝟏Ω−1)� = 𝜁𝜁 �𝑠𝑠−1 �
1
𝑉𝑉
�� > 1;  ℒ(𝑉𝑉) ≡ −  

𝑑𝑑 ln𝑃𝑃�𝟏𝟏Ω−1�
𝑑𝑑 ln𝑉𝑉

= Φ�𝑠𝑠−1 �
1
𝑉𝑉
�� > 0. 

Since 𝑠𝑠−1(1 𝑉𝑉⁄ ) is increasing in 𝑉𝑉,   
sgn {𝜁𝜁′(∙)} = sgn {𝜎𝜎′(∙)}     &     sgn {Φ′(∙)} = sgn {ℒ′(∙)}. 

Under H.S.A., the 2nd Law ⟺ Increasing Substitutability 

𝑧𝑧Φ′(𝑧𝑧)
Φ(𝑧𝑧) = 𝜁𝜁(𝑧𝑧) −�𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)

𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉, 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑤𝑤(𝜉𝜉) ≡
𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄

∫ [𝑠𝑠(𝜉𝜉′) 𝜉𝜉′⁄ ]𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉′

,�𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉 = 1 

Thus, 𝜎𝜎′(𝑉𝑉) ⋛ 0 ⟹ ℒ′(𝑉𝑉) ⋚ 0, and ℒ′(𝑉𝑉) = 0  ⟹  𝜎𝜎′(𝑉𝑉) = 0.  From this,  
Proposition 3:  Under H.S.A.,  

𝜎𝜎′(𝑉𝑉) ⋛ 0,   ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞)    ⟹    ℒ′(𝑉𝑉) ⋚ 0,    ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞), 
The reverse is not true in general, except  

ℒ′(𝑉𝑉) = 0,    ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞)  ⟹   𝜎𝜎′(𝑉𝑉) = 0,   ∀𝑉𝑉 ∈ (1 𝑠𝑠(𝑧𝑧0)⁄ ,∞). 
Under H.S.A., the 2nd Law ⟺ Increasing Substitutability ⟹ Diminishing Love-for-Variety. 
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Part 6: Dixit-Stiglitz under H.S.A. 
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6.1. Equilibrium: Dixit-Stiglitz Monopolistic Competition under H.S.A. 
Recall that, under general homothetic demand systems, the equilibrium may not be symmetric and may not be unique. 
 
Profit Maximization: max

𝑜𝑜𝜔𝜔
 Π𝜔𝜔 = (𝑝𝑝𝜔𝜔 − 𝜓𝜓)𝑥𝑥𝜔𝜔 = �1 −

𝜓𝜓
𝑝𝑝𝜔𝜔
� 𝑠𝑠 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)

�𝐸𝐸 

Firms take the value of 𝐴𝐴 = 𝐴𝐴(𝐩𝐩) as given. From the FOC, 
Lerner Pricing Formula: 𝑝𝑝𝜔𝜔 �1 −

1
𝜁𝜁(𝑝𝑝𝜔𝜔 𝐴𝐴⁄ )� = 𝜓𝜓 ⟹

𝑝𝑝𝜔𝜔
𝐴𝐴
�1 −

1
𝜁𝜁(𝑝𝑝𝜔𝜔 𝐴𝐴⁄ )� =

𝜓𝜓
𝐴𝐴

. 

For the expositional reason,   

Assumption A1:  For all 𝑧𝑧 ∈ (0, 𝑧𝑧), 
𝑑𝑑
𝑑𝑑𝑧𝑧

�𝑧𝑧 �1 −
1

𝜁𝜁(𝑧𝑧)�� =
1

𝜁𝜁(𝑧𝑧) �𝜁𝜁
(𝑧𝑧) − 1 +

𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) � = −

𝑧𝑧
𝜁𝜁(𝑧𝑧)

𝑑𝑑
𝑑𝑑𝑧𝑧

ln�
𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧)� > 0. 

The 2nd Law, 𝜁𝜁′(𝑧𝑧) > 0, is sufficient but not necessary for A1.  A1 ensures  
• The MR curve is increasing in 𝑝𝑝𝜔𝜔 (decreasing in 𝑥𝑥𝜔𝜔)  the profit-maximizing price is unique & increasing in 𝜓𝜓 𝐴𝐴⁄  , 

𝑝𝑝𝜔𝜔
𝐴𝐴
�1 −

1
𝜁𝜁(𝑝𝑝𝜔𝜔 𝐴𝐴⁄ )� =

𝜓𝜓𝜔𝜔
𝐴𝐴

 ⟹ 𝑧𝑧𝜔𝜔 =  
𝑝𝑝𝜔𝜔
𝐴𝐴

= 𝑍𝑍� �
𝜓𝜓
𝐴𝐴
� ;    𝑍𝑍�′(∙) > 0. 

All the firms set the same price. The Equilibrium is Symmetric!!  
•  Π = max

𝑜𝑜𝜔𝜔
 Π𝜔𝜔 = (1 − 𝜓𝜓 𝑝𝑝⁄ )𝑠𝑠(𝑧𝑧)𝐸𝐸 = [𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ ]𝐸𝐸 is decreasing in 𝑧𝑧 = 𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ ) and hence in 𝜓𝜓 𝐴𝐴⁄ .  

Thus, the Free Entry-Zero Profit Condition, Π = 𝐹𝐹, uniquely pins down 𝑧𝑧 = 𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ ) and 𝐴𝐴 and 𝑉𝑉 from 𝑠𝑠(𝑧𝑧)𝑉𝑉 = 1. 
 
Without A1, 𝑍𝑍�(∙), still increasing, may be only piecewise continuous, and Π = �𝑠𝑠 �𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ )� 𝜁𝜁 �𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ )�� � 𝐸𝐸, still 
decreasing, may be only piecewise-differentiable, which complicates the exposition.  
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Equilibrium is Unique and Symmetric!  And we already know that these can be expressed as: 
 
Lerner Formula: 𝑝𝑝𝑒𝑒𝑒𝑒 �1 −

1
𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)� = 𝜓𝜓 Equilibrium Price: 

𝑝𝑝𝑒𝑒𝑒𝑒 =
𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒)

𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) − 1
𝜓𝜓 ≡ 𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒)𝜓𝜓 

Product Variety: 𝑉𝑉𝑒𝑒𝑒𝑒𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) =
𝐸𝐸
𝐹𝐹

. Equilibrium Quantity: 
𝑥𝑥𝑒𝑒𝑒𝑒 =

(𝜎𝜎(𝑉𝑉𝑒𝑒𝑒𝑒) − 1)𝐹𝐹
𝜓𝜓

=
𝐹𝐹

(𝜇𝜇(𝑉𝑉𝑒𝑒𝑒𝑒) − 1)𝜓𝜓
 

  
A1 ensures that 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄  is globally decreasing, and hence 𝑉𝑉𝜎𝜎(𝑉𝑉) is globally increasing, because  

𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧) =

1
𝑉𝑉𝜎𝜎(𝑉𝑉). 

 
6.2. Comparative Statics under H.S.A. 
 
The results obtained for general homothetic demand system under the assumption that the equilibrium is unique and 
symmetric obviously carry over to this case.  
 
The results in the case of procompetitive entry are also those in the case of the 2nd law under H.S.A., because entry is 
procompetitive iff the 2nd law holds under H.S.A.  
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6.3. Optimum vs. Equilibrium under H.S.A. 
 
From Φ(𝑧𝑧) ≡ 1

𝑐𝑐(𝑧𝑧)∫
𝑐𝑐(𝜉𝜉)
𝜉𝜉

d𝜉𝜉�̅�𝑧
𝑧𝑧 , 

𝜕𝜕 lnΦ(𝑧𝑧)
𝜕𝜕 ln 𝑧𝑧

= −
𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) −

1
Φ(𝑧𝑧) = 𝜁𝜁(𝑧𝑧) − 1 −

1
Φ(𝑧𝑧). 

Thus,  

ℒ′(𝑉𝑉) ⋚ 0 ⟺Φ(𝑧𝑧) ⋚ 0 ⟺  𝜁𝜁(𝑧𝑧) − 1 ⋚
1

Φ(𝑧𝑧) ⟺ ℒ(𝑉𝑉) ⋚
1

𝜎𝜎(𝑉𝑉) − 1
⟺ 𝑉𝑉𝑜𝑜 ⋚ 𝑉𝑉𝑒𝑒. 

 
Proposition 4: In the Dixit-Stiglitz environment under H.S.A.,  

𝜁𝜁′(𝑧𝑧) ⋚ 0 for all 𝑧𝑧 > 0 ⟺ 𝜎𝜎′(𝑉𝑉) ⋚ 0 for all 𝑉𝑉 > 0 
⟹ 

ℒ′(𝑉𝑉) ⋛ 0 for all 𝑉𝑉 > 0 ⟺ 𝑉𝑉𝑒𝑒𝑒𝑒 ⋚ 𝑉𝑉𝑜𝑜𝑜𝑜 for all 𝐸𝐸 𝐹𝐹⁄ > 0. 
Moreover,  

𝜁𝜁(𝑧𝑧) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.  ⟺  𝜎𝜎(𝑉𝑉) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.⟺ ℒ(𝑉𝑉) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.  ⟺  𝑉𝑉𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑜𝑜𝑜𝑜 for all𝐸𝐸 𝐹𝐹⁄ > 0. 
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Under H.S.A.,  
 
 

 
 

    The 2nd Law  
𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) is increasing in 𝑝𝑝𝜔𝜔 
𝜁𝜁∗(𝑥𝑥𝜔𝜔; 𝐱𝐱) is decreasing in 𝑥𝑥𝜔𝜔 

⟹ Diminishing Love-for-Variety 
ℒ′(𝑉𝑉) < 0 for all 𝑉𝑉 > 0.  

⇕  ⇕ 
Increasing Substitutability 

Procompetitive Entry  
𝜎𝜎′(𝑉𝑉) > 0 for all 𝑉𝑉 > 0.                    

⟹ Excessive Product Variety 
ℒ(𝑉𝑉)[𝜎𝜎(𝑉𝑉) − 1] < 1 for all 𝑉𝑉 > 0 
⟺ 𝑉𝑉𝑒𝑒𝑒𝑒 ⋛ 𝑉𝑉𝑜𝑜𝑜𝑜 for all 𝐸𝐸 𝐹𝐹⁄ > 0. 

These relations do not hold generally!! 
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Part 7: Melitz under H.S.A. 
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7.1. The Melitz Environment:  
 
One Primary Factor of Production: “Labor” taken as numeraire. 
 
A Continuum of Differentiated Intermediate Inputs:  
Each variety is produced (and sold exclusively) by a single firm using “labor”.  
𝑑𝑑 ∈ Ω is both the index of a differentiated product, as well as that of the firm producing it.     
 
Asymmetric Intermediate Input Producing MC Firms:  
• The symmetric demand system: Their products enter symmetrically in the demand system.  
• All firms have the same sunk cost of entry,𝐹𝐹𝑒𝑒. But they become ex-post heterogeneous in their marginal cost. 

o Entry allows firm 𝑑𝑑 to learn its marginal cost of production, 𝜓𝜓𝜔𝜔, randomly drawn from the cdf, 𝐺𝐺(𝜓𝜓), with the 
pdf, 𝑔𝑔(𝜓𝜓) = 𝐺𝐺′(𝜓𝜓) > 0 over the support, �𝜓𝜓,𝜓𝜓�� ⊆ (0,∞). 

• All firms have the same fixed “overhead” cost of production, 𝐹𝐹.  The overhead cost is not sunk; firms don’t have to 
pay if they choose not to stay in the market. 

• Upon learning its marginal cost,, firm 𝑑𝑑 calculate its gross profit, Π(𝜓𝜓𝜔𝜔).  
o If Π(𝜓𝜓𝜔𝜔) < 𝐹𝐹, the firms exit immediately without paying the overhead, 𝐹𝐹.  
o If Π(𝜓𝜓𝜔𝜔) ≥ 𝐹𝐹, the firms stay by paying 𝐹𝐹. 

 
Free Entry: Ex-ante identical firms enter until 𝐹𝐹𝑒𝑒 = ∫ max{Π(𝜓𝜓) − 𝐹𝐹, 0}𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓�

𝜓𝜓, .  

This ensures no excess profit, and the total demand for “labor” in this sector is equal to 𝐿𝐿 = 𝐩𝐩𝐱𝐱 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐸𝐸. 
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7.2. Pricing: Markup & Pass-Through Rates. Given 𝐸𝐸 & 𝐴𝐴 = 𝐴𝐴(𝐩𝐩), firm 𝑑𝑑 chooses 𝑝𝑝𝜔𝜔 and hence  𝑧𝑧𝜔𝜔 = 𝑝𝑝𝜔𝜔 𝐴𝐴⁄ . 

max(𝑝𝑝𝜔𝜔 − 𝜓𝜓)𝑥𝑥𝜔𝜔  = max
𝑧𝑧𝜔𝜔

�1 −
𝜓𝜓𝜔𝜔 𝐴𝐴⁄
𝑧𝑧𝜔𝜔

� 𝑠𝑠(𝑧𝑧𝜔𝜔)𝐸𝐸. 

 
Lerner Pricing Formula 𝑧𝑧𝜔𝜔 �1 −

1
𝜁𝜁(𝑧𝑧𝜔𝜔)� =

𝜓𝜓𝜔𝜔
𝐴𝐴

. 

  
Under A1, LHS is monotonically increasing in 𝑧𝑧𝜔𝜔  firms with the same 𝜓𝜓 set the same price  𝑝𝑝𝜔𝜔 = 𝑝𝑝𝜓𝜓. 

Normalized Price: 
𝑝𝑝𝜓𝜓
𝐴𝐴
≡ 𝑧𝑧𝜓𝜓 = 𝑍𝑍� �

𝜓𝜓
𝐴𝐴
�  ∈ (𝜓𝜓 𝐴𝐴⁄ , 𝑧𝑧̅),𝑍𝑍�′(∙) > 0; 

Price Elasticity:  𝜁𝜁�𝑧𝑧𝜓𝜓� = 𝜁𝜁 �𝑍𝑍� �
𝜓𝜓
𝐴𝐴
�� ≡ 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� > 1;  Markup Rate: 𝜇𝜇𝜓𝜓 ≡

𝑝𝑝𝜓𝜓
𝜓𝜓

=
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1
≡ 𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� > 1. 

with 
1

𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) +
1

𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) = 1;          ℰ𝜎𝜎 �
𝜓𝜓
𝐴𝐴
� = −

ℰ𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) − 1

;     ℰ𝜇𝜇 �
𝜓𝜓
𝐴𝐴
� = −

ℰ𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) − 1

  

 

Pass-Through Rate:  𝜌𝜌𝜓𝜓 ≡
𝜕𝜕 ln𝑝𝑝𝜓𝜓
𝜕𝜕 ln𝜓𝜓

= ℰ𝑍𝑍� �
𝜓𝜓
𝐴𝐴
� ≡ 𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� =

1

1 + ℰ1−1 𝜁𝜁⁄ �𝑍𝑍�(𝜓𝜓 𝐴𝐴⁄ )�
= 1 + ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� > 0 

are all functions of the normalized cost, 𝜓𝜓 𝐴𝐴⁄ , only. 
• Market size 𝐸𝐸 affects the pricing behaviors of firms only through its effects on 𝐴𝐴. 
• More competitive pressures, a lower 𝐴𝐴, act like a uniform decline in firm productivity.  
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Easy to verify: 

𝜁𝜁′(𝑧𝑧) ⋛ 0 ⟺ ℰ𝜎𝜎 �
𝜓𝜓
𝐴𝐴
� ⋛ 0 ⟺ ℰ𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� ⋚ 0 ⟺ 𝜌𝜌�

𝜓𝜓
𝐴𝐴
� ⋚ 1. 

• Under CES, 𝜎𝜎(∙) = 𝜎𝜎;  𝜇𝜇(∙) = 𝜎𝜎 (𝜎𝜎 − 1)⁄ = 𝜇𝜇;  𝜌𝜌(∙) = 1. More competitive pressures, 1 𝐴𝐴⁄ ↑, has no effect. 
 
Definitions: Laws of Demand  
 General Case: H.S.A. 
1st Law 

𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩) ≡ −
𝜕𝜕 ln𝐷𝐷(𝑝𝑝𝜔𝜔;𝐩𝐩)

𝜕𝜕 ln 𝑝𝑝𝜔𝜔
> 0 𝜁𝜁(𝑧𝑧𝜔𝜔) = 1 −

𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)
𝑠𝑠(𝑧𝑧𝜔𝜔) > 0. 

2nd Law 𝜕𝜕 ln 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

=
𝜕𝜕

𝜕𝜕 ln 𝑝𝑝𝜔𝜔
�−

𝜕𝜕 ln𝐷𝐷(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

� > 0 ℰ𝜁𝜁(𝑧𝑧𝜔𝜔) ≡
𝑧𝑧𝜔𝜔𝜁𝜁′(𝑧𝑧𝜔𝜔)
𝜁𝜁(𝑧𝑧𝜔𝜔) > 0. 

Strong  
(Weak)  
3rd Law 

𝜕𝜕
𝜕𝜕𝑝𝑝𝜔𝜔

�
𝜕𝜕 ln 𝜁𝜁(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

� =
𝜕𝜕
𝜕𝜕𝑝𝑝𝜔𝜔

�
𝜕𝜕

𝜕𝜕 ln𝑝𝑝𝜔𝜔
�−

𝜕𝜕 ln𝐷𝐷(𝑝𝑝𝜔𝜔;𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

�� < (≤)0 
ℰ𝜁𝜁 (𝜁𝜁−1)⁄

′(𝑧𝑧𝜔𝜔) > (≥)0 
⟺ ℰ1−1 𝜁𝜁⁄

′(𝑧𝑧𝜔𝜔) < (≤)0. 

 
The 2nd Law:  Implications on the Markup and Pass-Through Rates. 
Assumption A2  (The 2nd Law):  For all 𝑧𝑧 ∈ (0, 𝑧𝑧), 𝜁𝜁′(𝑧𝑧) > 0. 
o high 𝜓𝜓-firms face high price elasticity, set lower markup rates, and incomplete pass-through.  
o More competitive pressures, 1 𝐴𝐴⁄ ↑ ⟹ 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) ↑ and  𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) ↓ across all firms.  
o 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) could go either way. 

 
The 3rd Law: Implications on the Markup and Pass-Through Rates 
Assumption A3 (A3):  For all 𝑧𝑧 ∈ (0, 𝑧𝑧), .ℰ1−1 𝜁𝜁⁄

′(𝑧𝑧𝜔𝜔) < (≤)0 
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Under the strong 3rd law,  

 ℰ1 𝜇𝜇⁄
′ �
𝜓𝜓
𝐴𝐴
� < 0 ⟺ ℰ𝜇𝜇′ �

𝜓𝜓
𝐴𝐴
� = 𝜌𝜌′ �

𝜓𝜓
𝐴𝐴
� > 0 ⟺

𝜕𝜕2 ln 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) > 0. 

o high 𝜓𝜓-firms have higher pass-through rates.  
o More competitive pressures, 1 𝐴𝐴⁄ ↑ ⟹  𝜌𝜌(∙) ↑ across all firms. 
o 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) is log-supermodular in 𝜓𝜓 and 1 𝐴𝐴⁄ .    
 The rates of decline in the markup rates caused by more competitive pressures, 1 𝐴𝐴⁄ ↑, under the 2nd law, are 
smaller among high 𝜓𝜓-firms.  A small dispersion of the markup rates across firms. 

 
The Effects of More Competitive Pressures, 𝟏𝟏 𝑨𝑨⁄ ↑, under the 2nd and Strong 3rd law.  
Log-markup rate function is decreasing (2nd) and convex (3rd).  Log-pass-through rate is increasing (3rd).  
 
 

 

 
 
 
 
Fallacy #8. “Translog is flexible, as it can approximate any homothetic symmetric demand system.”   
Translog violates even the weak 3rd law, and hence inconsistent with the evidence that more productive firms have 
lower pass-through rates. Translog offers at best the 2nd-order local approximation to the unit cost function.  
  

ln 𝜇𝜇 �
𝜓𝜓
𝐴𝐴
� > 0 ln𝜌𝜌( ) 

ln𝜌𝜌 �
𝜓𝜓
𝐴𝐴
� 
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7.3. Revenue, Profit, & Employment 
Revenue (Gross) Profit (Variable) Employment 

𝑅𝑅𝜓𝜓 = 𝑠𝑠�𝑧𝑧𝜓𝜓�𝐸𝐸 = 𝑠𝑠 �𝑍𝑍 �
𝜓𝜓
𝐴𝐴
��𝐸𝐸 ≡ 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
�𝐸𝐸 Π𝜓𝜓 =

𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 ≡ 𝜋𝜋 �

𝜓𝜓
𝐴𝐴
�𝐸𝐸 𝜓𝜓𝑥𝑥𝜓𝜓 =

𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )
𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 ≡ ℓ �

𝜓𝜓
𝐴𝐴
�𝐸𝐸 

They are all functions of 𝜓𝜓 𝐴𝐴⁄ , multiplied by market size 𝐸𝐸.  
• More competitive pressures, 1 𝐴𝐴⁄ ↑, act like a uniform decline in firm productivity. 

Revenue (Gross) Profit (Variable) Employment 

ℰ𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� = −�𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� − 1� 𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� < 0 ℰ𝜋𝜋 �

𝜓𝜓
𝐴𝐴
� = 1 − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
� < 0 ℰℓ �

𝜓𝜓
𝐴𝐴
� = 1 − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴
�𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� ⋚ 0 

Their elasticities depend solely on 𝜎𝜎(∙) and 𝜌𝜌(∙). 
• Market size affects the firm size distribution in profit, revenue and employment only via its effects on 𝐴𝐴. 

Under CES, 𝑟𝑟(∙) 𝜋𝜋(∙)⁄ = 𝜎𝜎;  𝑟𝑟(∙) ℓ(∙)⁄ = 𝜇𝜇 = 𝜎𝜎/(𝜎𝜎 − 1) ⟹ ℰ𝑟𝑟(∙) = ℰ𝜋𝜋(∙) = ℰℓ(∙) = 1 − 𝜎𝜎 < 0. 
• Revenue 𝑟𝑟(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 and profit 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 are always strictly decreasing in 𝜓𝜓 𝐴𝐴⁄ . 
• Employment ℓ( 𝜓𝜓 𝐴𝐴⁄ )𝐸𝐸 may be nonmonotonic in 𝜓𝜓 𝐴𝐴⁄ ;  hump-shaped under the 2nd & the weak 3rd laws. 

 
Revenue (Gross) Profit (Variable) Employment 

𝜕𝜕2 ln𝑅𝑅𝜓𝜓
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) = �1 − 𝜎𝜎 �

𝜓𝜓
𝐴𝐴��

𝜌𝜌′ �
𝜓𝜓
𝐴𝐴�

− 𝜎𝜎′ �
𝜓𝜓
𝐴𝐴�

𝜌𝜌 �
𝜓𝜓
𝐴𝐴�

 

Negative under the 2nd & weak 3rd laws 

𝜕𝜕2 lnΠ𝜓𝜓
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) = −𝜎𝜎′ �

𝜓𝜓
𝐴𝐴�

 

Negative under the 2nd law 

𝜕𝜕2 ln�𝜓𝜓𝑥𝑥𝜓𝜓�
𝜕𝜕𝜓𝜓𝜕𝜕(1 𝐴𝐴⁄ ) = −𝜎𝜎′ �

𝜓𝜓
𝐴𝐴�

𝜌𝜌 �
𝜓𝜓
𝐴𝐴�

− 𝜎𝜎 �
𝜓𝜓
𝐴𝐴�

𝜌𝜌′ �
𝜓𝜓
𝐴𝐴�

 

Negative under the 2nd & the weak 3rd laws 
Log-submodularity of the profit (under the 2nd) and of the revenue and employment (under the 2nd and weak 3rd). 
• With both 𝑅𝑅𝜓𝜓 & Π𝜓𝜓 decreasing in 𝜓𝜓, more competitive pressures, 1 𝐴𝐴⁄ ↑, cause a proportionately larger decline in 

the revenue & profit among high-𝜓𝜓 firms, hence a larger dispersion in the revenue & profit across firms.  
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Cross-Sectional Implications of More Competitive Pressures, 𝑨𝑨 ↓ under the 2nd and the weak 3rd
 laws.  

Profit, Π𝜓𝜓, decreasing & concave in nder the 2nd 
Revenue, 𝑅𝑅𝜓𝜓, decreasing & concave in ln𝜓𝜓 under 2nd & 
weak 3rd

𝐴𝐴 ↓ with 𝐿𝐿 fixed a parallel-shift left  larger down at 
higher 𝜓𝜓. 
𝐴𝐴 ↓ due to 𝐸𝐸 ↑, a parallel shift up, a single-crossing. 

Employment, hump-shaped & concave in under the 
2nd & weak 3rd. 
𝐴𝐴 ↓ with 𝐿𝐿 fixed a parallel-shift left, a single-crossing. 
𝐴𝐴 ↓ due to 𝐸𝐸 ↑, a parallel shift up. 

  

In summary, more competitive pressures (𝐴𝐴 ↓)  
• 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) ↓ under A2 & 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) ↑ under strong A3 
• Profit, Revenue, Employment become more concentrated among the more productive. 
  

ln𝑅𝑅𝜓𝜓 = ln 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� + ln𝐸𝐸 

lnΠ𝜓𝜓 = ln𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� + ln𝐸𝐸 

ln ℓ �
𝜓𝜓
𝐴𝐴
�𝐸𝐸 = ln 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
�𝐸𝐸 − ln 𝜇𝜇 �

𝜓𝜓
𝐴𝐴
� 

 

ln(𝑍𝑍−1(�̂�𝑧)𝐴𝐴) 
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7.4. Equilibrium: Existence & Uniqueness: Assume 𝐹𝐹 + 𝐹𝐹𝑒𝑒 < 𝜋𝜋(0)𝐸𝐸. 
 
Cutoff Rule: Stay if 𝜓𝜓 ≤ 𝜓𝜓𝑐𝑐; exit if 𝜓𝜓 > 𝜓𝜓𝑐𝑐, where  
 

max
𝜓𝜓𝑐𝑐

� �𝜋𝜋 �
𝜓𝜓
𝐴𝐴
�𝐸𝐸 − 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
⟹ 𝜋𝜋 �

𝜓𝜓𝑐𝑐
𝐴𝐴
�𝐸𝐸 = 𝐹𝐹 

positively-sloped. 𝐴𝐴 ↓ (more competitive pressures) ⟹𝜓𝜓𝑐𝑐 ↓ (tougher selection) 
rotate clockwise, as 𝐹𝐹 𝐸𝐸⁄ ↑ (higher overhead/market size) ⟹𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ↓. 
 
 
Free Entry 
Condition: 𝐹𝐹𝑒𝑒 = � �𝜋𝜋 �

𝜓𝜓
𝐴𝐴
�𝐸𝐸 − 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

shift to the left as 𝐹𝐹𝑒𝑒 ↓  (lower entry cost) ⟹ 𝐴𝐴 ↓ (more competitive pressures). 
 
𝐴𝐴 = 𝐴𝐴(𝐩𝐩) & 𝜓𝜓𝑐𝑐: uniquely determined, respond continuously to 𝐹𝐹𝑒𝑒 𝐸𝐸⁄  & 𝐹𝐹 𝐸𝐸⁄  in the interior, 0 < 𝐺𝐺(𝜓𝜓𝑐𝑐) < 1 for 

0 <
𝐹𝐹𝑒𝑒
𝐸𝐸

< � �𝜋𝜋 �𝜋𝜋−1 �
𝐹𝐹
𝐸𝐸
�
𝜓𝜓
𝜓𝜓�
� −

𝐹𝐹
𝐸𝐸
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓�

𝜓𝜓
, 

which holds for a sufficiently small 𝐹𝐹𝑒𝑒 > 0 with no further restrictions on 𝐺𝐺(∙) and 𝑠𝑠(∙).  
• This unique existence proof applies also to Melitz under CES.) 
• An industry-wide cost shock, 𝜆𝜆, of the form, 𝐺𝐺(𝜆𝜆𝜓𝜓), change 𝐴𝐴 & 𝜓𝜓𝑐𝑐 proportionately, such that that the distribution of 
𝜓𝜓 𝐴𝐴⁄  across active firms won’t change. In particular, it has no effect on the markup & pass-through rate distributions. 

 

O 𝐴𝐴 

𝜓𝜓𝑐𝑐 
𝜋𝜋 �

𝜓𝜓𝑐𝑐
𝐴𝐴 �

=
𝐹𝐹
𝐸𝐸

 

 

𝐹𝐹𝑒𝑒
𝐸𝐸

= � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴�

−
𝐹𝐹
𝐸𝐸
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
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Adding-Up (Resource) 
Constraint: 1 ≡ � 𝑠𝑠 �

𝑝𝑝𝜔𝜔
𝐴𝐴
�𝑑𝑑𝑑𝑑

Ω
= 𝑀𝑀� 𝑟𝑟 �

𝜓𝜓
𝐴𝐴
�𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

from which the mass of active firms/product variety = the measure of |Ω| = 𝑉𝑉 is, 

𝑉𝑉 = 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) = �� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�
𝑑𝑑𝐺𝐺(𝜓𝜓)
𝐺𝐺(𝜓𝜓𝑐𝑐)

𝜓𝜓𝑐𝑐

𝜓𝜓
�
−1

= �� 𝑟𝑟 �𝜋𝜋−1 �
𝐹𝐹
𝐸𝐸
� 𝜉𝜉� 𝑑𝑑𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐)

1

𝜉𝜉
�
−1

> 0 

where  

𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) ≡
𝐺𝐺(𝜓𝜓𝑐𝑐𝜉𝜉)
𝐺𝐺(𝜓𝜓𝑐𝑐)  

is the cdf of 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ , conditional on 𝜉𝜉 ≡ 𝜓𝜓 𝜓𝜓𝑐𝑐⁄ < 𝜉𝜉 ≤ 1.  
 
Lemma 1: ℰ𝑔𝑔′ (𝜓𝜓) < 0 ⟹ ℰ𝐺𝐺′ (𝜓𝜓) < 0; ℰ𝑔𝑔′ (𝜓𝜓) ≥ 0 ⟹ ℰ𝐺𝐺′ (𝜓𝜓) ≥ 0 with some boundary conditions. 
Lemma 2: A lower 𝜓𝜓𝑐𝑐 shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the right (left) in MLR if ℰ𝑔𝑔′ (𝜓𝜓) < (>)0 and in FSD if ℰ𝐺𝐺′ (𝜓𝜓) < (>)0. 
• Some evidence for ℰ𝑔𝑔′ (𝜓𝜓) > 0 ⟹𝜓𝜓𝑐𝑐 ↓ (tougher selection) shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the left.   
• Pareto-distributed productivity ⟺ Power-distributed marginal cost are self-similar.  
𝐺𝐺(𝜓𝜓) = (𝜓𝜓 𝜓𝜓�⁄ )𝜅𝜅 ⟹ ℰ𝑔𝑔′ (𝜓𝜓) = ℰ𝐺𝐺′ (𝜓𝜓) = 0 ⟹ 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) is independent of 𝜓𝜓𝑐𝑐. 

• Fréchet, Weibull, Lognormal; ℰ𝑔𝑔′ (𝜓𝜓) < 0 ⟹ ℰ𝐺𝐺′ (𝜓𝜓) < 0 ⟹ 𝜓𝜓𝑐𝑐 ↓ (tougher selection) shifts 𝐺𝐺�(𝜉𝜉;𝜓𝜓𝑐𝑐) to the right.  
 
Notice that there is no feedback effect from 𝑀𝑀 or 𝑉𝑉 on 𝐴𝐴 & 𝜓𝜓𝑐𝑐. 
Equilibrium can be solved recursively under H.S.A.!!   Not under HDIA/HIIA. 
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Revisiting Melitz (2003) under CES: 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 

Pricing: 𝜇𝜇 �
𝜓𝜓
𝐴𝐴
� =

𝜎𝜎
𝜎𝜎 − 1

> 1 ⇒ 𝜌𝜌�
𝜓𝜓
𝐴𝐴
� = 1 

⟹ ℰ𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� = ℰ𝜋𝜋 �

𝜓𝜓
𝐴𝐴
� = ℰℓ �

𝜓𝜓
𝐴𝐴
� = 1 − 𝜎𝜎 < 0. 

Relative firm size, in revenue, profit, employment, unchanged across 
equilibriums.  

Cutoff Rule: 𝑐𝑐0𝐸𝐸 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�
1−𝜎𝜎

= 𝐹𝐹, 

Free Entry Condition: � �𝑐𝑐0𝐸𝐸 �
𝜓𝜓
𝐴𝐴
�
1−𝜎𝜎

− 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
= 𝐹𝐹𝑒𝑒 , 

with 𝑐𝑐0 > 0.  As 𝐸𝐸 changes, the intersection moves along 

� ��
𝜓𝜓
𝜓𝜓𝑐𝑐
�
1−𝜎𝜎

− 1� 𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
=
𝐹𝐹𝑒𝑒
𝐹𝐹

 

horizontal, i.e., independent of 𝐴𝐴, hence of 𝐸𝐸. 
 
Under CES,  
• 𝐸𝐸 ↑ keeps 𝜓𝜓𝑐𝑐 unaffected; increases both 𝑀𝑀 and 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) proportionately; All adjustments at the extensive margin. 
• 𝐹𝐹𝑒𝑒 ↓ reduces 𝜓𝜓𝑐𝑐; increases 𝑀𝑀; increases (decreases) 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) if ℰ𝐺𝐺′ (𝜓𝜓) < (>)0; 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) unaffected under Pareto. 
• 𝐹𝐹 ↓ increases 𝜓𝜓𝑐𝑐; increases 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐); increases (decreases) 𝑀𝑀 if ℰ𝐺𝐺′ (𝜓𝜓) < (>)0; 𝑀𝑀 unaffected under Pareto. 

 
 

O 𝐴𝐴 

𝜓𝜓𝑐𝑐 

𝑐𝑐0 �
𝜓𝜓𝑐𝑐
𝐴𝐴 �

1−𝜎𝜎

=
𝐹𝐹
𝐸𝐸

 

 

𝐹𝐹𝑒𝑒
𝐸𝐸

= � �𝑐𝑐0 �
𝜓𝜓
𝐴𝐴�

1−𝜎𝜎

−
𝐹𝐹
𝐸𝐸�
𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

 

� ��
𝜓𝜓
𝜓𝜓𝑐𝑐
�
1−𝜎𝜎

− 1� 𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
=
𝐹𝐹𝑒𝑒
𝐸𝐸
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7.5. Aggregate Production Cost and Profit Shares and TFP 
 
Notations:  
The 𝑤𝑤(∙)-weighted average of 𝑓𝑓(∙) 
among the active firms, 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓𝑐𝑐� 𝔼𝔼𝑤𝑤(𝑓𝑓) ≡

∫ 𝑓𝑓 �𝜓𝜓𝐴𝐴�𝑤𝑤 �
𝜓𝜓
𝐴𝐴�𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐

𝜓𝜓

∫ 𝑤𝑤 �𝜓𝜓𝐴𝐴�𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

. 

The unweighted average of 𝑓𝑓(∙) 
among the active firms, 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓𝑐𝑐� 𝔼𝔼1(𝑓𝑓) ≡

∫ 𝑓𝑓 �𝜓𝜓𝐴𝐴�𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

∫ 𝑑𝑑𝐺𝐺(𝜓𝜓)𝜓𝜓𝑐𝑐
𝜓𝜓

. 

⟹ 𝔼𝔼𝑤𝑤 �
𝑓𝑓
𝑤𝑤
� =

𝔼𝔼1(𝑓𝑓)
𝔼𝔼1(𝑤𝑤) = �𝔼𝔼𝑓𝑓 �

𝑤𝑤
𝑓𝑓
��
−1

. 

Then, 
Aggregate TFP ln �

𝑋𝑋
𝐸𝐸
� = ln �

1
𝑃𝑃
� = ln �

𝑐𝑐
𝐴𝐴
� + 𝔼𝔼𝑟𝑟[Φ ∘ 𝑍𝑍] 

Aggregate Production Cost Share  
(Average inverse markup rate) 

𝔼𝔼1(ℓ)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜇𝜇
� = 1 − �𝔼𝔼𝜋𝜋 �

𝜇𝜇
𝜇𝜇 − 1

��
−1

=
1

𝔼𝔼ℓ(𝜇𝜇) 

Aggregate Profit Share  
(Average inverse price elasticity)  

𝔼𝔼1(𝜋𝜋)
𝔼𝔼1(𝑟𝑟) = 𝔼𝔼𝑟𝑟 �

1
𝜎𝜎
� =

1
𝔼𝔼𝜋𝜋(𝜎𝜎) = 1 − �𝔼𝔼ℓ �

𝜎𝜎
𝜎𝜎 − 1

��
−1

 

by applying the above formulae to 𝜋𝜋(∙) 𝑟𝑟(∙)⁄ = 1 − ℓ(∙) 𝑟𝑟(∙)⁄ = 1 𝜎𝜎(∙)⁄ = 1 − 1 𝜇𝜇(∙),⁄  
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7.6. Comparative Statics: Effects of 𝑭𝑭𝒆𝒆, 𝑬𝑬, and 𝑭𝑭 on Competitive Pressures, 𝑨𝑨, and Firm Selection, 𝝍𝝍𝒄𝒄  
 

�
𝑑𝑑 ln𝐴𝐴

𝑑𝑑 ln𝜓𝜓𝑐𝑐
� =

𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) �

1 − 𝑓𝑓𝜓𝜓 𝑓𝑓𝜓𝜓

1 − 𝑓𝑓𝜓𝜓 𝑓𝑓𝜓𝜓 − 𝛿𝛿
� �
𝑑𝑑 ln(𝐹𝐹𝑒𝑒 𝐸𝐸⁄ )

𝑑𝑑 ln(𝐹𝐹 𝐸𝐸⁄ )
� 

where  

 
𝔼𝔼1(𝜋𝜋)
 𝔼𝔼1(ℓ) =

1
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1

= {𝔼𝔼𝑟𝑟[𝜇𝜇−1]}−1 − 1 = 𝔼𝔼ℓ(𝜇𝜇) − 1 > 0; 

The average profit/average labor cost ratio among the active firms 
 

𝑓𝑓𝜓𝜓 ≡
𝐹𝐹𝐺𝐺(𝜓𝜓𝑐𝑐)

𝐹𝐹𝑒𝑒 + 𝐹𝐹𝐺𝐺(𝜓𝜓𝑐𝑐) =
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

 𝔼𝔼1(𝜋𝜋) < 1; 

The share of the overhead in the total expected fixed cost = to the profit of the cut-off firm relative to the average profit 
among the active firms 
 

𝛿𝛿 ≡
𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) − 1

=
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝔼𝔼1(ℓ)
𝔼𝔼1(𝜋𝜋) ≡ 𝑓𝑓𝜓𝜓

𝔼𝔼1(ℓ)
ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) > 0. 

The profit/labor cost ratio of the cut-off firm to the average profit/average labor cost ratio among the active firms. 
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. 

 
  

 𝐴𝐴 𝜓𝜓𝑐𝑐 𝐴𝐴⁄  𝜓𝜓𝑐𝑐 
𝐹𝐹𝑒𝑒 𝑑𝑑𝐴𝐴 

𝑑𝑑𝐹𝐹𝑒𝑒
> 0 

𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 
𝑑𝑑𝐹𝐹𝑒𝑒

= 0 
𝑑𝑑𝜓𝜓𝑐𝑐 
𝑑𝑑𝐹𝐹𝑒𝑒

> 0 

𝐸𝐸 𝑑𝑑𝐴𝐴 
𝑑𝑑𝐸𝐸

< 0 
𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 

𝑑𝑑𝐸𝐸
> 0 

𝑑𝑑𝜓𝜓𝑐𝑐 
𝑑𝑑𝐸𝐸

< 0 ⇔ 𝔼𝔼𝜋𝜋(𝜎𝜎) < 𝜎𝜎 �𝜓𝜓𝑐𝑐
𝐴𝐴
�,  which holds globally if 𝜎𝜎′(∙) > 0. 

𝐹𝐹 𝑑𝑑𝐴𝐴 
𝑑𝑑𝐹𝐹

> 0 
𝑑𝑑(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 

𝑑𝑑𝐹𝐹
< 0 

𝑑𝑑𝜓𝜓𝑐𝑐 
𝑑𝑑𝐹𝐹

> 0 ⇔ 𝔼𝔼1(ℓ) < ℓ �𝜓𝜓𝑐𝑐
𝐴𝐴
�,   which holds globally if ℓ′(∙) > 0 

𝐹𝐹𝑒𝑒 ↓ 𝐸𝐸 ↑  under 𝔼𝔼𝜋𝜋(𝜎𝜎) < 𝜎𝜎(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 𝐹𝐹 ↓ under 𝔼𝔼1(ℓ) < ℓ(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) 
   

O 𝐴𝐴 

𝐹𝐹𝑒𝑒
𝐸𝐸

= � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴�

−
𝐹𝐹
𝐸𝐸
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴 �

=
𝐹𝐹
𝐸𝐸

 

 

𝜓𝜓𝑐𝑐 
 

O A 

� �
𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ )
𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ ) − 1� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
=
𝐹𝐹𝑒𝑒
𝐹𝐹

 

 

𝐹𝐹𝑒𝑒
𝐸𝐸

= � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴�

−
𝐹𝐹
𝐸𝐸
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴 �

=
𝐹𝐹
𝐸𝐸

 

 

𝜓𝜓𝑐𝑐 

O 
𝐴𝐴 

� �𝜋𝜋 �
𝜓𝜓
𝐴𝐴�

− 𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴 �

� 𝑑𝑑𝐺𝐺(𝜓𝜓)
𝜓𝜓𝑐𝑐

𝜓𝜓
=
𝐹𝐹𝑒𝑒
𝐸𝐸

 

𝐹𝐹𝑒𝑒
𝐸𝐸

= � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴�

−
𝐹𝐹
𝐸𝐸
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴 �

=
𝐹𝐹
𝐸𝐸

 

 

𝜓𝜓𝑐𝑐 
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Limit Case of 𝑭𝑭 → 𝟎𝟎 with 𝒛𝒛� < ∞. 
 
Cutoff Rule:  
 

𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴
� = 0 ⟺

𝜓𝜓𝑐𝑐
𝐴𝐴

= 𝑧𝑧̅ = 𝜋𝜋−1(0) 

Free Entry Condition: 𝐹𝐹𝑒𝑒
𝐸𝐸

= � 𝜋𝜋 �𝑧𝑧̅
𝜓𝜓
𝜓𝜓𝑐𝑐
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
= � 𝜋𝜋 �

𝜓𝜓
𝐴𝐴
�𝑑𝑑𝐺𝐺(𝜓𝜓)

�̅�𝑧𝐴𝐴

𝜓𝜓
. 

 
𝐴𝐴 and 𝜓𝜓𝑐𝑐: uniquely determined as functions of 𝐹𝐹𝑒𝑒 𝐸𝐸⁄  with the interior solution, 0 < 𝐺𝐺(𝜓𝜓𝑐𝑐) < 1 for 

0 <
𝐹𝐹𝑒𝑒
𝐸𝐸

< � 𝜋𝜋�𝑧𝑧̅
𝜓𝜓
𝜓𝜓�
�𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓�

𝜓𝜓
. 

𝑑𝑑𝜓𝜓𝑐𝑐
𝜓𝜓𝑐𝑐

=
𝑑𝑑𝐴𝐴
𝐴𝐴

=
1

𝔼𝔼𝜋𝜋(𝜎𝜎) − 1
𝑑𝑑(𝐹𝐹𝑒𝑒 𝐸𝐸⁄ )
𝐹𝐹𝑒𝑒 𝐸𝐸⁄

 

𝑑𝑑𝑀𝑀
𝑑𝑑(𝐹𝐹𝑒𝑒 𝐸𝐸⁄ ) < 0;   ℰ𝐺𝐺′ (𝜓𝜓) ⋚ 0 ⟺

𝑑𝑑[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]
𝑑𝑑(𝐹𝐹𝑒𝑒 𝐸𝐸⁄ ) ⋚ 0 

 
𝐸𝐸 ↑ is isomorphic to 𝐹𝐹𝑒𝑒 ↓. 
 

  
O 𝐴𝐴 

 

𝐹𝐹𝑒𝑒
𝐿𝐿

= � 𝜋𝜋 �𝑧𝑧̅
𝜓𝜓
𝜓𝜓𝑐𝑐
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
 

 

𝜓𝜓𝑐𝑐
𝐴𝐴

= 𝑧𝑧̅ 

 

𝜓𝜓𝑐𝑐 
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7.7. Comparative Statics: Market Size Effects on Firm Size Distributions in Profit and Revenue 
7a: Under the 2nd, there exists a unique 𝜓𝜓0 ∈ (𝜓𝜓,𝜓𝜓𝑐𝑐) 
such that 𝜎𝜎(𝜓𝜓0 𝐴𝐴⁄ ) = 𝔼𝔼𝜋𝜋(𝜎𝜎) with 

𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln𝐸𝐸

> 0 ⟺ 𝜎𝜎�
𝜓𝜓
𝐴𝐴
� < 𝔼𝔼𝜋𝜋(𝜎𝜎) for 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓0�, 

and 
𝑑𝑑 lnΠ𝜓𝜓
𝑑𝑑 ln𝐸𝐸

< 0 ⟺ 𝜎𝜎�
𝜓𝜓
𝐴𝐴
� > 𝔼𝔼𝜋𝜋(𝜎𝜎) for 𝜓𝜓 ∈ (𝜓𝜓0,𝜓𝜓𝑐𝑐). 

7b: Under the 2nd & weak 3rd, there exists 𝜓𝜓1 > 𝜓𝜓0,  
such that 

𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln𝐸𝐸

> 0 for 𝜓𝜓 ∈ �𝜓𝜓,𝜓𝜓1�. 
Furthermore, 𝜓𝜓1 ∈ (𝜓𝜓0,𝜓𝜓𝑐𝑐) and  

𝑑𝑑 ln𝑅𝑅𝜓𝜓
𝑑𝑑 ln𝐸𝐸

<  0 for 𝜓𝜓 ∈ (𝜓𝜓1,𝜓𝜓𝑐𝑐), 
for a sufficiently small 𝐹𝐹. 

In short, more productive firms expand in absolute terms, while less productive firms shrink. 
 
 
 
 
 
 
 
 
 
 
Note:  
𝜓𝜓0 < 𝜓𝜓𝑐𝑐 always hold since 𝜋𝜋(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )𝐸𝐸 = 𝐹𝐹 in equilibrium, so that the old and new cutoff firms earn the same profit. 
On the other hand, 𝜓𝜓1 > 𝜓𝜓𝑐𝑐 can happen, since the new cutoff firms must earn higher revenue than the old cutoff firms, 
so it is possible that every surviving firm might earn higher revenue. This can be ruled out if 𝐹𝐹 is small enough. 

ln𝑅𝑅𝜓𝜓 = ln 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� + ln𝐸𝐸 

lnΠ𝜓𝜓 = ln𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� + ln𝐸𝐸 
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7.8. Comparative Statics: Average Markup and Pass-Through Rates (The Composition Effect) 
 
• Under 2nd , 𝐴𝐴 ↓ causes 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ) ↓ for each 𝜓𝜓, but distribution shifts toward low-𝜓𝜓 firms with higher 𝜇𝜇(𝜓𝜓 𝐴𝐴⁄ ). 
• Under strong 3rd, 𝐴𝐴 ↓ causes 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ) ↑ for each 𝜓𝜓, but distribution shifts toward low-𝜓𝜓 firms with lower 𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ ). 

 
Assume that ℰ𝑔𝑔′ (⋅) does not change its sign and 𝜓𝜓 = 0. Consider a shock to 𝐹𝐹𝑒𝑒, 𝐸𝐸, and/or 𝐹𝐹, which affects competitive 
pressures, i.e., 𝑑𝑑𝐴𝐴 ≠ 0. Then, the response of any weighted generalized mean of any monotone function, 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ) >
0, defined by  

𝐼𝐼 ≡ ℳ−1 �𝔼𝔼𝑤𝑤�ℳ(𝑓𝑓)��  
with a monotone transformation ℳ:ℝ+ → ℝ  and a weighting function, 𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ ) > 0,  satisfies: 

 𝑓𝑓′(⋅) > 0 𝑓𝑓′(⋅) = 0 𝑓𝑓′(⋅) < 0 
ℰ𝑔𝑔′ (⋅) > 0 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝑑𝑑 ln𝐴𝐴
≥ 0 ⟹

𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

> 0 
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

= 0 
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≥ 0 ⟹
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

< 0 
ℰ𝑔𝑔′ (⋅) = 0 
(Pareto) 

𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

⋛ 0 ⟺
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

⋛ 0 
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

= 0 
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

⋛ 0 ⟺
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

⋚ 0 

ℰ𝑔𝑔′ (⋅) < 0 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≤ 0 ⟹
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

< 0 
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

= 0 
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≤ 0 ⟹
𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

> 0 

Moreover, if ℰ𝑔𝑔′ (⋅) = 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

= 0, 𝑑𝑑 ln 𝐼𝐼 𝑑𝑑 ln𝐴𝐴⁄ = 0 for any 𝑓𝑓(𝜓𝜓 𝐴𝐴⁄ ), monotonic or not. Furthermore, ℰ𝑔𝑔′ (⋅) can be 
replaced with ℰ𝐺𝐺′ (⋅) in all the above statements for 𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ ) = 1, i.e., the unweighted averages. 

The arithmetic, 𝐼𝐼 = �𝔼𝔼𝑤𝑤(𝑓𝑓)�, geometric, 𝐼𝐼 = exp[𝔼𝔼𝑤𝑤(ln𝑓𝑓)], harmonic, 𝐼𝐼 = �𝔼𝔼𝑤𝑤(𝑓𝑓−1)�−1, means are special cases.  
The weight function, w(𝜓𝜓 𝐴𝐴⁄ ), can be profit, revenue, and employment. 
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Corollary 
a) Entry Cost: 𝑓𝑓′(⋅)ℰ𝑔𝑔′ (⋅) ⋛ 0 ⟺ 𝑑𝑑ln 𝐼𝐼

𝑑𝑑 ln𝐹𝐹𝑒𝑒
= 𝑑𝑑 ln 𝐼𝐼

𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐹𝐹𝑒𝑒

⋛ 0. 

b) Market Size: If ℰ𝑔𝑔′ (⋅) ≤ 0, then, 𝑓𝑓′(⋅) ⋛ 0 ⟹ 𝑑𝑑ln 𝐼𝐼
𝑑𝑑 ln𝐸𝐸

= 𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐸𝐸

⋛ 0. 

c) Overhead Cost: If ℰ𝑔𝑔′ (⋅) ≤ 0, then, 𝑓𝑓′(⋅) ⋛ 0 ⟹ 𝑑𝑑ln 𝐼𝐼
𝑑𝑑 ln𝐹𝐹

= 𝑑𝑑 ln 𝐼𝐼
𝑑𝑑 ln𝐴𝐴

 𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐹𝐹

⋚ 0. 
Furthermore, ℰ𝑔𝑔′ (⋅) can be replaced with ℰ𝐺𝐺′ (⋅) for 𝑤𝑤(𝜓𝜓 𝐴𝐴⁄ ) = 1, i.e., the unweighted averages. 

 
For the entry cost, 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝑑𝑑 ln𝐴𝐴
= 0. 

• ℰ𝑔𝑔′ (⋅) > 0; sufficient & necessary for the composition effect to dominate:  
o The average markup & pass-through rates move in the opposite direction from the firm-level rates  

• ℰ𝑔𝑔′ (⋅) = 0 (Pareto); a knife-edge. 𝐴𝐴 ↓→ no change in average markup and pass-through. 
• ℰ𝑔𝑔′ (⋅) < 0; sufficient & necessary for the procompetitive effect to dominate: 

The average markup & pass-through rates move in the same direction from the firm-level rates  
 
For market size and the overhead cost, 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )

𝑑𝑑 ln𝐴𝐴
< 0 

• ℰ𝑔𝑔′ (⋅) > 0; necessary for the composition effect to dominate:   
• ℰ𝑔𝑔′ (⋅) ≤ 0; sufficient for the procompetitive effect to dominate: 
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7.9. Comparative Statics: Impact on 𝑷𝑷 𝑨𝑨⁄   

ln �
𝐴𝐴
𝑐𝑐𝑃𝑃
� = 𝔼𝔼𝑟𝑟[Φ ∘ 𝑍𝑍]; 

 
𝜁𝜁′(⋅) ⋛ 0 ⟹Φ′(⋅) ⋚ 0 ⟺Φ ∘ 𝑍𝑍′(⋅) ⋚ 0. 

 
Assume 𝜓𝜓 = 0, and neither 𝜁𝜁′(⋅) nor ℰ𝑔𝑔′ (⋅) change the signs. Consider a shock to 𝐹𝐹𝑒𝑒, 𝐸𝐸, and/or 𝐹𝐹, which affects 
competitive pressures, i.e., 𝑑𝑑𝐴𝐴 ≠ 0. Then, the response of 𝑃𝑃 𝐴𝐴⁄  satisfies: 
 

 𝜁𝜁′(⋅) > 0 (A2) 𝜁𝜁′(⋅) = 0 (CES) 𝜁𝜁′(⋅) < 0 

ℰ𝑔𝑔′ (⋅) > 0 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≥ 0 ⟹
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

> 0 
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

= 0 
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≥ 0 ⟹
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

< 0 

ℰ𝑔𝑔′ (⋅) = 0 (Pareto) 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

⋛ 0 ⟺
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

⋛ 0 
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

= 0 
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

⋛ 0 ⟺
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

⋚ 0 

ℰ𝑔𝑔′ (⋅) < 0 𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≤ 0 ⟹
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

< 0 
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

= 0 
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≤ 0 ⟹
𝑑𝑑 ln(𝑃𝑃 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

> 0 
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7.10. Comparative Statics: Masses of Entrant 𝑴𝑴 and Active Firms, 𝑽𝑽 = 𝑴𝑴𝑴𝑴(𝝍𝝍𝒄𝒄) 
 

Proposition 9: Assume that ℰ𝐺𝐺′ (⋅) does not change its sign and 𝜓𝜓 = 0. Consider a shock to 𝐹𝐹𝑒𝑒, 𝐹𝐹, and/or 𝐸𝐸, which 
affects competitive pressures, i.e., 𝑑𝑑𝐴𝐴 ≠ 0. Then, the response of the mass of active firms, 𝑉𝑉 = 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐), is as follows: 

𝐼𝐼𝑓𝑓 ℰ𝐺𝐺′ (⋅) > 0,
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≥ 0 ⟹
𝑑𝑑 ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]

𝑑𝑑 ln𝐴𝐴
> 0; 

𝐼𝐼𝑓𝑓 ℰ𝐺𝐺′ (⋅) = 0,
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

⋛ 0 ⟺
𝑑𝑑 ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]

𝑑𝑑 ln𝐴𝐴
⋛ 0; 

𝐼𝐼𝑓𝑓 ℰ𝐺𝐺′ (⋅) < 0,
𝑑𝑑 ln(𝜓𝜓𝑐𝑐 𝐴𝐴⁄ )
𝑑𝑑 ln𝐴𝐴

≤ 0 ⟹
𝑑𝑑 ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]

𝑑𝑑 ln𝐴𝐴
< 0. 

Corollary 1 of Proposition 9 
a) Entry Cost: ℰ𝐺𝐺′ (⋅) ⋛ 0 ⟺ 𝑑𝑑ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]

𝑑𝑑 ln𝐹𝐹𝑒𝑒
= 𝑑𝑑 ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]

𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐹𝐹𝑒𝑒

⋛ 0. 

b) Market Size: ℰ𝐺𝐺′ (⋅) ≤ 0 ⟹ 𝑑𝑑ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]
𝑑𝑑 ln𝐿𝐿

= 𝑑𝑑 ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]
𝑑𝑑 ln𝐴𝐴

𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐸𝐸

> 0. 

c) Overhead Cost: ℰ𝐺𝐺′ (⋅) ≤ 0 ⟹ 𝑑𝑑ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]
𝑑𝑑 ln𝐹𝐹

= 𝑑𝑑 ln[𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐)]
𝑑𝑑 ln𝐴𝐴

𝑑𝑑 ln𝐴𝐴
𝑑𝑑 ln𝐹𝐹

< 0. 
 
For a decline in the entry cost, 
ℰ𝑔𝑔′ (⋅) > 0 sufficient & necessary for 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) ↓; ℰ𝑔𝑔′ (⋅) = 0, no effect; ℰ𝑔𝑔′ (⋅) < 0; sufficient & necessary for 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) ↑  
For market size and the overhead cost 
ℰ𝑔𝑔′ (⋅) > 0 necessary for 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) ↓; ℰ𝑔𝑔′ (⋅) ≤ 0 sufficient for 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐) ↑ 
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Impact of Competitive Pressures on Unit Cost/TFP 
 
By combining Corollary 2 of Proposition 8 and Corollary 1 of Proposition, 
 
Corollary 2 of Proposition 9: Assume 𝜓𝜓 = 0, and neither 𝜁𝜁′(⋅) nor ℰ𝑔𝑔′ (⋅) change the signs. Consider a shock to 𝐹𝐹𝑒𝑒, 
𝐸𝐸, and/or 𝐹𝐹, which affects competitive pressures, i.e., 𝑑𝑑𝐴𝐴 ≠ 0. Then, the response of 𝑃𝑃 satisfies: 

 𝜁𝜁′(⋅) > 0 (A2) 𝜁𝜁′(⋅) = 0 (CES) 𝜁𝜁′(⋅) < 0 

ℰ𝑔𝑔′ (⋅) > 0 𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

> 1 𝑓𝑓𝑐𝑐𝑟𝑟 𝐹𝐹𝑒𝑒 
𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

= 1 ? 

ℰ𝑔𝑔′ (⋅) = 0 (Pareto) 

𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

= 1 𝑓𝑓𝑐𝑐𝑟𝑟 𝐹𝐹𝑒𝑒 

0 <
𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

< 1 𝑓𝑓𝑐𝑐𝑟𝑟 𝐹𝐹 𝑐𝑐𝑟𝑟 𝐸𝐸;  

𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

= 1 

𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

= 1 𝑓𝑓𝑐𝑐𝑟𝑟 𝐹𝐹𝑒𝑒  
𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

> 1 𝑓𝑓𝑐𝑐𝑟𝑟 𝐹𝐹 𝑐𝑐𝑟𝑟 𝐸𝐸 

ℰ𝑔𝑔′ (⋅) < 0 0 <
𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

< 1 
𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

= 1 
𝑑𝑑 ln𝑃𝑃
𝑑𝑑 ln𝐴𝐴

> 1 
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7.11. A Multi-Market Extension: Sorting of Heterogeneous Firms: 
 
𝑱𝑱 markets, 𝑗𝑗 = 1,2, … , 𝐽𝐽,  with market size 𝐿𝐿𝑗𝑗 . 
Possible Interpretations 
• Identical Households with Cobb-Douglas preferences, ∑ 𝛽𝛽𝑗𝑗 ln𝑋𝑋𝑗𝑗

𝐽𝐽
𝑗𝑗=1  with ∑ 𝛽𝛽𝑗𝑗

𝐽𝐽
𝑗𝑗=1 = 1.  Then, 𝐿𝐿𝑗𝑗 = 𝛽𝛽𝑗𝑗𝐿𝐿. 

• 𝐽𝐽 types of consumers, with 𝐿𝐿𝑗𝑗 equal to the total income of type-𝑗𝑗 consumers. “Types” can be their “tastes” or 
“locations”, etc. 

 
Assume 
• Market size is the only exogenous source of heterogeneity across markets: Index them as 𝐿𝐿1 > 𝐿𝐿2 >, … , > 𝐿𝐿𝐽𝐽 > 0. 
• Labor is fully mobile, equalizing the wage across the markets. We continue to use it as the numeraire. 
• Firm’s marginal cost, 𝜓𝜓, is independent of the market it chooses. 
o Each firm pays 𝐹𝐹𝑒𝑒 > 0 to draw its marginal cost 𝜓𝜓 ∼ 𝐺𝐺(𝜓𝜓). 
o Knowing its 𝜓𝜓, each firm decides which market to enter and produce with an overhead cost, 𝐹𝐹 > 0, or exit without 

producing. 
o Firms sell their products at the profit-maximizing prices in the market they enter. 

 
Equilibrium Condition: 𝐹𝐹𝑒𝑒 = � max�Π𝜓𝜓 − 𝐹𝐹, 0� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓

𝜓𝜓
= � max �max

1≤𝑗𝑗≤𝐽𝐽
�Π𝑗𝑗𝜓𝜓� − 𝐹𝐹, 0� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓

𝜓𝜓
, 

where 

Π𝑗𝑗𝜓𝜓 ≡
𝑠𝑠 �𝑍𝑍�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ ��

𝜁𝜁 �𝑍𝑍�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ ��
𝐿𝐿𝑗𝑗 ≡

𝑟𝑟�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �
𝜎𝜎�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �

𝐿𝐿𝑗𝑗 = 𝜋𝜋 �
𝜓𝜓
𝐴𝐴𝑗𝑗
� 𝐿𝐿𝑗𝑗 . 
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Equilibrium Characterization under A2  
 
Larger markets are more competitive: 

0 < 𝐴𝐴1 < 𝐴𝐴2 < ⋯ < 𝐴𝐴𝐽𝐽 < ∞, where 𝑀𝑀� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴𝑗𝑗
�𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑗𝑗

𝜓𝜓𝑗𝑗−1

= 1. 

Note: Because 𝜋𝜋(∙) is strictly decreasing, this implies 𝜋𝜋(𝜓𝜓 𝐴𝐴1⁄ ) < 𝜋𝜋(𝜓𝜓 𝐴𝐴2⁄ ) < ⋯ < 𝜋𝜋�𝜓𝜓 𝐴𝐴𝐽𝐽⁄ �  for all 𝜓𝜓. 
 
More productive firms self-select into larger markets (Positive Assortative Matching) 
 
Firms with 𝜓𝜓 ∈ (𝜓𝜓𝑗𝑗−1,𝜓𝜓𝑗𝑗) enter market-𝑗𝑗 and those with 𝜓𝜓 ∈ (𝜓𝜓𝐽𝐽,∞) do not enter any market, where 
0 ≤ 𝜓𝜓 = 𝜓𝜓0 < 𝜓𝜓1 < 𝜓𝜓2 < ⋯ < 𝜓𝜓𝐽𝐽 < 𝜓𝜓 ≤ ∞  

where 
𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1
= 1  for 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽 − 1;    𝜋𝜋 �

𝜓𝜓𝐽𝐽
𝐴𝐴𝐽𝐽
� 𝐿𝐿𝐽𝐽 ≡ 𝐹𝐹 

 
Note:  𝜓𝜓𝑗𝑗-firms are indifferent btw entering Market-𝑗𝑗 & entering Market-(𝑗𝑗 + 1). 
 
Free Entry Condition: 

� � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴𝑗𝑗
� 𝐿𝐿𝑗𝑗 − 𝐹𝐹�𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑗𝑗

𝜓𝜓𝑗𝑗−1

𝐽𝐽

𝑗𝑗=1
= 𝐹𝐹𝑒𝑒 

 
 
Mass of Firms in Market-𝒋𝒋: 𝑀𝑀[𝐺𝐺(𝜓𝜓𝑗𝑗) − 𝐺𝐺(𝜓𝜓𝑗𝑗−1)] > 0 
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Logic Behind Sorting 
 
𝐿𝐿𝑗𝑗 > 𝐿𝐿𝑗𝑗+1 ⟹ 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1. Otherwise, no firm would enter 𝑗𝑗 + 1. 

⟹ 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �

  strictly decreasing in 𝜓𝜓 

due to strict log-supermodularity of 𝜋𝜋(𝜓𝜓 𝐴𝐴⁄ ) under A2  
 

⟹ �
Π𝑗𝑗𝜓𝜓

Π(𝑗𝑗+1)𝜓𝜓
=

𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1

⋛ 1 ⟺𝜓𝜓 ⋚ 𝜓𝜓𝑗𝑗� 

 
 

Under CES, 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1

 is independent of 𝜓𝜓.  

⟹ Π𝑗𝑗𝑗𝑗
Π(𝑗𝑗+1)𝑗𝑗

= 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1

= 1 in equilibrium.  

⟹ Firms indifferent across all markets.  
⟹ Distribution of firms across markets is indeterminate. 
 
Our mechanism generates sorting through competitive pressures. As such, 
• complementary to agglomeration-economies-based mechanisms offered by Gaubert (2018) and Davis-Dingel (2019) 
• justifies the equilibrium selection criterion used by Baldwin-Okubo (2006), which use CES, as a limit argument.   
  

O 

1 

𝜓𝜓 
 

𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗−1⁄ �𝐿𝐿𝑗𝑗−1
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

 

 

𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1

 

 

𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗 

Enter Market-j 
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Cross-Sectional, Cross-Market Implications:  
 
Profits:  Under A2 

𝐿𝐿𝑗𝑗 > 𝐿𝐿𝑗𝑗+1 ⟹ 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1 ⟹ �
𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1
⋛ 1 ⟺𝜓𝜓 ⋚ 𝜓𝜓𝑗𝑗�  

 
Π𝜓𝜓 = max

𝑗𝑗
�𝜋𝜋 �𝜓𝜓

𝐴𝐴𝑗𝑗
� 𝐿𝐿𝑗𝑗�,  the upper-envelope of 𝜋𝜋�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗, is continuous 

and decreasing in 𝜓𝜓, with the kinks at 𝜓𝜓𝑗𝑗.  
Continuous, since the lower markup rate in Market-𝑗𝑗 cancels out its larger market size, keeping 𝜓𝜓𝑗𝑗-firms indiffierent 
btw Market-𝑗𝑗 & Market-(𝑗𝑗 + 1). 
 
Revenues: Under A2 
 

𝑟𝑟�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗
𝑟𝑟�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1

=
𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �𝐿𝐿𝑗𝑗

𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝜋𝜋�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �𝐿𝐿𝑗𝑗+1
=

𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄ �
𝜎𝜎�𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗+1⁄ �

> 1 

 
𝑅𝑅𝜓𝜓: continuously decreasing in 𝜓𝜓 within each market; jumps down at 𝜓𝜓𝑗𝑗.  
With the markup rate lower in Market-𝑗𝑗, 𝜓𝜓𝑗𝑗-firms need to earn higher 
revenue to keep them indiffierent btw Market-𝑗𝑗 & and Market-(𝑗𝑗 + 1).  

𝜓𝜓𝐽𝐽−1 𝜓𝜓𝐽𝐽−2  

𝐹𝐹 

Π𝜓𝜓 

𝜋𝜋�𝜓𝜓 𝐴𝐴𝐽𝐽⁄ �𝐿𝐿𝐽𝐽 

𝜋𝜋�𝜓𝜓 𝐴𝐴𝐽𝐽−1⁄ �𝐿𝐿𝐽𝐽−1 

𝜋𝜋�𝜓𝜓 𝐴𝐴𝐽𝐽−2⁄ �𝐿𝐿𝐽𝐽−2 

𝑟𝑟�𝜓𝜓 𝐴𝐴𝐽𝐽−2⁄ �𝐿𝐿𝐽𝐽−2 

𝜓𝜓 𝜓𝜓𝐽𝐽−2 𝜓𝜓𝐽𝐽−1 

𝑟𝑟�𝜓𝜓 𝐴𝐴𝐽𝐽⁄ �𝐿𝐿𝐽𝐽 

𝑅𝑅𝜓𝜓 

𝑟𝑟�𝜓𝜓 𝐴𝐴𝐽𝐽−1⁄ �𝐿𝐿𝐽𝐽−1 
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Markup Rates: Under A2 

𝐿𝐿𝑗𝑗 > 𝐿𝐿𝑗𝑗+1 ⇒ 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1 ⇒ 𝜎𝜎 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
� > 𝜎𝜎 �

𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗+1

� ⟺ 𝜇𝜇 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
� < 𝜇𝜇 �

𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗+1

� 

𝜇𝜇𝜓𝜓: continuously decreasing in 𝜓𝜓 within each market but jumps up at 𝜓𝜓𝑗𝑗.  
 
 
• The average markup rates may be higher in larger (and hence more competitive) markets. 
• The average markup rates in all markets may go up, even if all markets become more competitive (𝐴𝐴𝑗𝑗 ↓). 
 
 
Pass-Through Rates:  Under A2 and the strong A3   

𝐿𝐿𝑗𝑗 > 𝐿𝐿𝑗𝑗+1 ⇒ 𝐴𝐴𝑗𝑗 < 𝐴𝐴𝑗𝑗+1 ⇒ 𝜌𝜌 �
𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗
� > 𝜌𝜌 �

𝜓𝜓𝑗𝑗
𝐴𝐴𝑗𝑗+1

� 

𝜌𝜌𝜓𝜓: continuously increasing in 𝜓𝜓 within each market but jumps down at 𝜓𝜓𝑗𝑗.  
 
• The average pass-through rates may be lower in larger (and hence more competitive) markets. 
• The average pass-through rates in all markets go down even if all markets become more competitive (𝐴𝐴𝑗𝑗 ↓). 
 
  

𝜇𝜇�𝜓𝜓 𝐴𝐴𝐽𝐽−2⁄ � 

𝜓𝜓 𝜓𝜓𝐽𝐽−2 𝜓𝜓𝐽𝐽−1 

𝜇𝜇�𝜓𝜓 𝐴𝐴𝐽𝐽⁄ � 

𝜇𝜇𝜓𝜓 

𝜇𝜇�𝜓𝜓 𝐴𝐴𝐽𝐽−1⁄ � 

𝜌𝜌�𝜓𝜓 𝐴𝐴𝐽𝐽−2⁄ � 

𝜓𝜓 𝜓𝜓𝐽𝐽−2 𝜓𝜓𝐽𝐽−1 

𝜌𝜌�𝜓𝜓 𝐴𝐴𝐽𝐽⁄ � 
𝜌𝜌𝜓𝜓 

𝜌𝜌�𝜓𝜓 𝐴𝐴𝐽𝐽−1⁄ � 
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Average Markup and Pass-Through Rates in a Multi-Market Model: The Composition Effect 
 
Proposition 11a:  Suppose A2 and 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �

𝜅𝜅
. There exists a sequence, 𝐿𝐿1 > 𝐿𝐿2 > ⋯ > 𝐿𝐿𝐽𝐽 > 0, such that, in 

equilibrium, any weighted generalized mean of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � across firms operating at market-𝑗𝑗 are increasing 
(decreasing) in 𝑗𝑗 even though 𝑓𝑓(⋅) is increasing (decreasing) and hence 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � is decreasing (increasing) in 𝑗𝑗. 

Corollary of Proposition 11a: An example with 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅

, such that the average markup rates are higher (and 
the average pass-through rates are lower under Strong A3) in larger markets. 
 
Proposition 11b: Suppose A2 and 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �

𝜅𝜅
. Then, a change in 𝐹𝐹𝑒𝑒 keeps  

i) the ratios 𝑚𝑚𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗−1 𝜓𝜓𝑗𝑗⁄  and 𝑏𝑏𝑗𝑗 ≡ 𝜓𝜓𝑗𝑗 𝐴𝐴𝑗𝑗⁄   
and  
ii) any weighted generalized mean of 𝑓𝑓�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ � across firms operating at market-𝑗𝑗, for any weighting function 

𝑤𝑤�𝜓𝜓 𝐴𝐴𝑗𝑗⁄ �,  
unchanged for all 𝑗𝑗 = 1,2, … , 𝐽𝐽. 

Corollary of Proposition 11b: 𝐹𝐹𝑒𝑒 ↓ and 𝐺𝐺(𝜓𝜓) = �𝜓𝜓 𝜓𝜓⁄ �
𝜅𝜅
 offers a knife-edge case, where the average markup and 

pass-through rates of all markets remain unchanged.  
 

A caution against testing A2/A3 by comparing the average markup & pass-through rates across space and time. 
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7.12. International/Interregional Trade with Differential Market Access 
 
• Two symmetric markets, characterized by market size 𝐸𝐸, and “labor” supply at the price equal to one, ensuring the 

same level of competitive pressures, 𝐴𝐴.  
 
• After paying 𝐹𝐹𝑒𝑒, & learning 𝜓𝜓𝜔𝜔, firm 𝑑𝑑 can produce its product at home & sell to both markets.  
o The overhead cost, 𝐹𝐹 > 0  and the marginal cost of selling to the home market, 𝜓𝜓𝜔𝜔.  
o The overhead cost, 𝐹𝐹 > 0  and the marginal cost of selling to the export market, 𝜏𝜏𝜓𝜓𝜔𝜔 > 𝜓𝜓𝜔𝜔.  Iceberg cost, 𝝉𝝉 > 𝟏𝟏.  

 
Cutoff Rules: Firm 𝑑𝑑 sells to both markets iff 𝜓𝜓𝜔𝜔 ≤ 𝜓𝜓𝜓𝜓𝑐𝑐 < 𝜓𝜓𝑐𝑐; only to the home market iff 𝜓𝜓𝜓𝜓𝑐𝑐 < 𝜓𝜓𝜔𝜔 ≤ 𝜓𝜓𝑐𝑐, where 

𝐹𝐹 ≡ 𝜋𝜋 �
𝜓𝜓𝑐𝑐
𝐴𝐴
�𝐸𝐸 ≡ 𝜋𝜋 �

𝜏𝜏𝜓𝜓𝜓𝜓𝑐𝑐
𝐴𝐴

�𝐸𝐸. 

Free-Entry Condition: 

𝐹𝐹𝑒𝑒 = � �𝜋𝜋 �
𝜓𝜓
𝐴𝐴
�𝐸𝐸 − 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
+ � �𝜋𝜋 �

𝜏𝜏𝜓𝜓
𝐴𝐴
�𝐸𝐸 − 𝐹𝐹� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑥𝑥𝑐𝑐

𝜓𝜓
. 

These two conditions jointly pin down the equilibrium value of  𝜓𝜓𝑐𝑐 ≡ 𝜏𝜏𝜓𝜓𝜓𝜓𝑐𝑐 ≡ 𝜋𝜋−1(𝐹𝐹 𝐸𝐸⁄ )𝐴𝐴 by: 

𝐹𝐹𝑒𝑒
𝐸𝐸

= � �𝜋𝜋 �
𝜓𝜓
𝜓𝜓𝑐𝑐

𝜋𝜋−1 �
𝐹𝐹
𝐸𝐸
�� −

𝐹𝐹
𝐸𝐸
�𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
+ � �𝜋𝜋 �

𝜏𝜏𝜓𝜓
𝜓𝜓𝑐𝑐

𝜋𝜋−1 �
𝐹𝐹
𝐸𝐸
�� −

𝐹𝐹
𝐸𝐸
� 𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐 𝜏𝜏⁄

𝜓𝜓
. 
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Comparative Statics: The Effect of Globalization: A Reduction in 𝝉𝝉 > 𝟏𝟏. 
 
• A decline in 𝜓𝜓𝑐𝑐 and an increase in 𝜓𝜓𝜓𝜓𝑐𝑐 = 𝜓𝜓𝑐𝑐 𝜏𝜏⁄ .   𝐺𝐺(𝜓𝜓𝑐𝑐) falls, 𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐) rises, and 𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐) 𝐺𝐺(𝜓𝜓𝑐𝑐)⁄  rises.   

• A decline in 𝐴𝐴 and an increase in 𝐴𝐴 𝜏𝜏⁄ .  

o 𝑟𝑟(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) & 𝜋𝜋(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) decline,  𝑟𝑟(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) & 𝜋𝜋(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) rise.  

o 𝜇𝜇(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) declines and 𝜇𝜇(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) rises under the 2nd law.  

o 𝜇𝜇(𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) rises and 𝜇𝜇(𝜏𝜏𝜓𝜓𝜔𝜔 𝐴𝐴⁄ ) declines under the Strong 3rd law.  

 

The masses of entering firms, 𝑀𝑀, of active firms 𝑀𝑀𝐺𝐺(𝜓𝜓𝑐𝑐), and of exporting firms, 𝑀𝑀𝐺𝐺(𝜓𝜓𝜓𝜓𝑐𝑐), are pinned down by: 

Adding-Up (Resource) Constraint:  

𝑀𝑀 �� 𝑟𝑟 �
𝜓𝜓
𝐴𝐴
�𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑐𝑐

𝜓𝜓
+ � 𝑟𝑟 �

𝜏𝜏𝜓𝜓
𝐴𝐴
�𝑑𝑑𝐺𝐺(𝜓𝜓)

𝜓𝜓𝑥𝑥𝑐𝑐

𝜓𝜓
� = 1. 
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Part 8:  Other Forms of Firm Heterogeneity 
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8.1 Sticky Prices in New Keynesian (NK) Macro 
 
Two Pricing Rules 
Rotemberg (1982): Symmetric firms set the same price, but must pay the adjustment cost increasing the price change. 
Calvo (1983): A fraction of firms randomly given the chances to reset their prices at each moment. Individual prices 
jump infrequently. The “average” price adjusts sluggishly. Firms heterogenous in their prices. 
 
Most NK models:  a fixed set of firms (no entry) and CES demand systems.  An exgenous slope of the Phillips curve. 
Fujiwara & Matsuyama (2022): allow entry and H.S.A, endogenous slope of the Phillips curve.  
A higher entry cost  market concentration  a flattening of the Phillips curve for  
o The 2nd law + Rotemberg  
o The Strong 3rd law +  Calvo.  (Under translog + Calvo, a higher entry cost leads to a steeper Philips curve.)  

FM also considered HDIA and HIIA, but a full GE analysis feasible only under H.S.A. 
 
8.2 Technology Diffusion and Competitive Fringes  
MC firms enjoy only the temporary monopoly.  After the loss of monopoly power, they are forced priced 
competitively.  Different MC firms set price differently. Possibility of endogenous innovation cycles  
 
Judd (1985) and Matsuyama (1999) under CES:  
The condition for the instability of the steady state and endogenous innovation cycles independent of market size. 
Matsuyama and Ushchev (2022) under H.S.A. 
A larger market size causes the instability of the steady state and endogenous innovation cycles under the 2nd law and 
procompetitive entry. 
Matsuyama and Ushchev (2024) under HDIA. Similar result,but shown only numerically.  
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Appendix 1: H.S.A., HDIA and HIIA 
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3 Classes of (Symmetric) CES Production Functions with Gross Substitutes (and Inessentiality)  
 
Homothetic Single Aggregator (H.S.A.): Two Equivalent Definitions 

𝑠𝑠𝜔𝜔 =
𝜕𝜕 ln 𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝑑𝑑

= 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)�   with � 𝑠𝑠 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω

≡ 1 
 
⟺ 𝑠𝑠𝜔𝜔 =

𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝑑𝑑

= 𝑠𝑠∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)�  with� 𝑠𝑠∗ �

𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)

� 𝑑𝑑𝑑𝑑
Ω

≡ 1 

𝑠𝑠(𝑧𝑧) > 0 > 𝑠𝑠′(𝑧𝑧) for 0 < 𝑧𝑧 < 𝑧𝑧̅ ≤ ∞; 𝑠𝑠(𝑧𝑧) = 0 for 𝑧𝑧 ≥ 𝑧𝑧̅. 
𝑠𝑠(∙): ℝ+ → ℝ+, thus 𝐴𝐴(𝐩𝐩), independent of 𝑍𝑍 > 0, TFP.  

𝑠𝑠∗(0) = 0, 𝑠𝑠∗(𝑦𝑦) > 0,  0 < 𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)� < 1. 
𝑠𝑠∗(∙): ℝ+ → ℝ+, thus 𝐴𝐴∗(𝐱𝐱), independent of 𝑍𝑍 > 0, TFP.  

𝑍𝑍 > 0, TFP, shows up when we integrate the definition of H.S.A. to obtain 𝑃𝑃(𝐩𝐩) or 𝑋𝑋(𝐱𝐱).  
 
Homothetic Direct Implicit Additivity (HDIA): 𝑋𝑋(𝐱𝐱) ≡ 𝑍𝑍𝑋𝑋�(𝐱𝐱) defined by 

ℳ�� 𝜙𝜙 �
𝑍𝑍𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)� 𝑑𝑑𝑑𝑑Ω

� ≡ ℳ �� 𝜙𝜙�
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�𝑑𝑑𝑑𝑑
Ω

� ≡ 1. 

𝜙𝜙(0) = 0;𝜙𝜙(∞) = ∞; 𝜙𝜙′(𝓎𝓎) > 0 > 𝜙𝜙′′(𝓎𝓎),−𝓎𝓎𝜙𝜙′′(𝓎𝓎) 𝜙𝜙′(𝓎𝓎)⁄ < 1 for 0 < 𝓎𝓎 < ∞. 
𝜙𝜙(∙): ℝ+ → ℝ+, thus 𝑋𝑋�(𝐱𝐱), is independent of 𝑍𝑍 > 0, TFP.  
 
Homothetic Indirect Implicit Additivity (HIIA): 𝑃𝑃(𝐩𝐩) ≡ 𝑃𝑃�(𝐩𝐩) 𝑍𝑍⁄  defined by 

ℳ�� 𝜃𝜃 �
𝑝𝑝𝜔𝜔

𝑍𝑍𝑃𝑃(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω
� ≡ ℳ �� 𝜃𝜃 �

𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�𝑑𝑑𝑑𝑑
Ω

� ≡ 1 

𝜃𝜃(𝓏𝓏) > 0, 𝜃𝜃′(𝓏𝓏) < 0 < 𝜃𝜃"(𝓏𝓏) > 0, −𝓏𝓏𝜃𝜃′′(𝓏𝓏) 𝜃𝜃′(𝓏𝓏)⁄ > 1  for 0 < 𝓏𝓏 < �̅�𝓏 ≤ ∞ & 
𝜃𝜃(𝓏𝓏) = 0 for 𝓏𝓏 ≥ �̅�𝓏.  𝜃𝜃(∙): ℝ++ → ℝ+, thus 𝑃𝑃�(𝐩𝐩), is independent of 𝑍𝑍 > 0, TFP.  
 
The 3 classes are pairwise disjoint with the sole exception of CES. 
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Budget Shares: One Reason Why HDIA, HIIA, and H.S.A. Are Tractable. 
 

CES 𝑠𝑠𝜔𝜔 =
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝑓𝑓 �
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)� ⇔ 𝑠𝑠𝜔𝜔 ∝ �

𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)�

1−𝜎𝜎
;  𝑠𝑠𝜔𝜔 =

𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

= 𝑓𝑓∗ �
𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)� ⇔ 𝑠𝑠𝜔𝜔 ∝ �

𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)�

1−1𝜎𝜎
 

H.S.A. 𝑠𝑠𝜔𝜔 = 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� = 𝑠𝑠∗ �

𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)

� 𝑃𝑃(𝐩𝐩)
𝐴𝐴(𝐩𝐩) =

𝐴𝐴∗(𝐱𝐱)
𝑋𝑋(𝐱𝐱)

≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡. unless CES 

HDIA 
Kimball 

𝑠𝑠𝜔𝜔 =
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

� =
𝑥𝑥𝜔𝜔
𝐶𝐶∗(𝐱𝐱)

𝜙𝜙′ �
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

� 
𝑃𝑃�(𝐩𝐩)
𝐵𝐵(𝐩𝐩) =

𝐶𝐶∗(𝐱𝐱)
𝑋𝑋�(𝐱𝐱)

≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.,  unless CES 

HIIA 𝑠𝑠𝜔𝜔 =
𝑝𝑝𝜔𝜔
𝐶𝐶(𝐩𝐩)𝜃𝜃

′ �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

� =
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

(𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)
� 

𝐶𝐶(𝐩𝐩)
𝑃𝑃�(𝐩𝐩)

=
𝑋𝑋�(𝐱𝐱)
𝐵𝐵∗(𝐱𝐱) ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡., unless CES 

𝐴𝐴(𝐩𝐩),𝐵𝐵(𝐩𝐩),𝐶𝐶(𝐩𝐩), defined implicitly by the adding up constraint, ∫ 𝑠𝑠𝜔𝜔𝑑𝑑𝑑𝑑Ω ≡ 1. Clearly, they are all linear homogenous in 𝐩𝐩;  

𝐴𝐴∗(𝐱𝐱),𝐵𝐵∗(𝐱𝐱),𝐶𝐶∗(𝐱𝐱), defined implicitly by the adding up constraint, ∫ 𝑠𝑠𝜔𝜔𝑑𝑑𝑑𝑑Ω ≡ 1. Clearly, they are all linear homogenous in 𝐱𝐱. 
 
Significant reduction in the dimensionality:  
The cross-variety effect is captured in one aggregator (under H,S.A.) or in two aggregators (under HDIA or HIIA).  
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Price Elasticity: Another Reason Why HDIA, HIIA, and H.S.A. Are Tractable. 
 
HDIA: 
Kimball 
 

ℳ�� 𝜙𝜙�
𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

�𝑑𝑑𝑑𝑑
Ω

� ≡ 1 
 
 Price Elasticity 𝜁𝜁𝐷𝐷(𝓎𝓎𝜔𝜔) ≡ −

𝜙𝜙′(𝓎𝓎𝜔𝜔)
𝓎𝓎𝜔𝜔𝜙𝜙′′(𝓎𝓎𝜔𝜔) > 1 

is a function of a single variable, 𝓎𝓎𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝑋𝑋�(𝐱𝐱)⁄ . Comparative statics hinge on its derivative.  
CES if 𝜁𝜁𝐷𝐷(𝓎𝓎𝜔𝜔) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.  The 2nd Law if 𝜁𝜁𝐷𝐷′(𝓎𝓎𝜔𝜔) < 0, which also informs us of the cross-variety effect. 
 
HIIA: 

ℳ�� 𝜃𝜃 �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

�𝑑𝑑𝑑𝑑
Ω

� ≡ 1 
 
 Price Elasticity 
 

𝜁𝜁𝐼𝐼(𝓏𝓏𝜔𝜔) ≡ −
𝓏𝓏𝜔𝜔𝜃𝜃′′(𝓏𝓏𝜔𝜔)
𝜃𝜃′(𝓏𝓏𝜔𝜔) > 1 

is a function of a single variable, 𝓏𝓏𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝑃𝑃�(𝐩𝐩)⁄ ,  Comparative statics hinge on its derivative.   
CES if 𝜁𝜁𝐼𝐼(𝓏𝓏𝜔𝜔) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.  The 2nd Law, if 𝜁𝜁𝐼𝐼′(𝓏𝓏𝜔𝜔) > 0, which also informs us of the cross-variety effect. 
 
H.S.A.: 

� 𝑠𝑠𝜔𝜔 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝑑𝑑𝑑𝑑Ω

≡ 1 
 
 Price Elasticity 𝜁𝜁(𝑧𝑧𝜔𝜔) ≡ 1 −

𝑧𝑧𝜔𝜔𝑠𝑠′(𝑧𝑧𝜔𝜔)
𝑠𝑠(𝑧𝑧𝜔𝜔) > 1 

� 𝑠𝑠𝜔𝜔∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)

� 𝑑𝑑𝑑𝑑
Ω

≡ 1 
 
 Price Elasticity 𝜁𝜁∗(𝑦𝑦𝜔𝜔) ≡ �1 −

𝑦𝑦𝜔𝜔𝑠𝑠∗′(𝑦𝑦𝜔𝜔)
𝑠𝑠∗(𝑦𝑦𝜔𝜔) �

−1

> 1 

is a function of a single variable, 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ , or 𝑦𝑦𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝐴𝐴∗(𝐱𝐱)⁄ .  Comparative statics hinge on its derivative.  
CES if 𝜁𝜁(𝑧𝑧𝜔𝜔) = 𝜁𝜁∗(𝑦𝑦𝜔𝜔) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡.   
The 2nd Law, if 𝜁𝜁′(𝑧𝑧𝜔𝜔) > 0 ⟺ 𝜁𝜁∗′(𝑦𝑦𝜔𝜔) < 0, which also informs us of the cross-variety effect.  
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Price Elasticity, Substitutability, & Love-for-Variety: Yet another Reason Why These 3 Classes Are Tractable. 
 
H.S.A. 𝜁𝜁𝜔𝜔 = 𝜁𝜁 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)� 𝜎𝜎(𝑉𝑉) = 𝜁𝜁 �𝑠𝑠−1 �

1
𝑉𝑉
�� ℒ(𝑉𝑉) = Φ�𝑠𝑠−1 �

1
𝑉𝑉
�� 

where 𝜁𝜁(𝑧𝑧) ≡ 1 − 𝑧𝑧𝑐𝑐′(𝑧𝑧)
𝑐𝑐(𝑧𝑧) > 1 and Φ(𝑧𝑧) ≡ 1

𝑐𝑐(𝑧𝑧)∫
𝑐𝑐(𝜉𝜉)
𝜉𝜉

d𝜉𝜉�̅�𝑧
𝑧𝑧 > 0. 

HDIA 
𝜁𝜁𝜔𝜔 = 𝜁𝜁𝐷𝐷 �

𝑥𝑥𝜔𝜔
𝑋𝑋�(𝐱𝐱)

� 𝜎𝜎(𝑉𝑉) = 𝜁𝜁𝐷𝐷 �𝜙𝜙−1 �
1
𝑉𝑉
� � ℒ(𝑉𝑉) =

1
ℰ𝜙𝜙(𝜙𝜙−1(1 𝑉𝑉⁄ ) )

− 1 

where 𝜁𝜁𝐷𝐷(𝓎𝓎) ≡ − 𝜙𝜙′(𝓎𝓎)
𝓎𝓎𝜙𝜙′′(𝓎𝓎) > 1 and 0 < ℰ𝜙𝜙(𝓎𝓎) ≡ 𝓎𝓎𝜙𝜙′(𝓎𝓎)

𝜙𝜙(𝓎𝓎) < 1. 
HIIA 

𝜁𝜁𝜔𝜔 = 𝜁𝜁𝐼𝐼 �
𝑝𝑝𝜔𝜔
𝑃𝑃�(𝐩𝐩)

� 𝜎𝜎(𝑉𝑉) = 𝜁𝜁𝐼𝐼 �𝜃𝜃−1 �
1
𝑉𝑉
�� ℒ(𝑉𝑉) =

1
ℰ𝜃𝜃�𝜃𝜃−1(1 𝑉𝑉⁄ )�

 

where 𝜁𝜁𝐼𝐼(𝓏𝓏)  ≡ −𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) > 1 and ℰ𝜃𝜃(𝓏𝓏) ≡ −𝓏𝓏𝜃𝜃′(𝓏𝓏)

𝜃𝜃(𝓏𝓏) > 0. 
 
In each of these 3 classes, one could show 
• 𝜎𝜎′(𝑉𝑉) > 0 if and only if the 2nd law of demand holds.  
• 𝜎𝜎′(𝑉𝑉) ⋛ 0 ⟹ ℒ′(𝑉𝑉) ⋚ 0. The converse is not true in general. But,  
• ℒ′(𝑉𝑉) = 0 ⟺ 𝜎𝜎′(𝑉𝑉) = 0 ⟺ 𝜁𝜁𝜔𝜔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡., which occurs iff CES. 
• ℒ′(𝑉𝑉) ⋚ 0 ⟺  𝑉𝑉𝑜𝑜𝑜𝑜 ⋚ 𝑉𝑉𝑒𝑒𝑒𝑒 . 
 In particular,   
The 2nd Law ⟺ Increasing Substitutability (Procompetitive Entry)  
⟹ Diminishing Love-for Variety ⟺ Excessive Entry  
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What is the relative advantage of the three classes?   
 
H.S.A. has advantage over HDIA and HIIA, because 
 
• Translog is a special case. 
 
• The revenue share functions, 𝒔𝒔𝝎𝝎(∙) or 𝒔𝒔𝝎𝝎∗ (∙), are the primitive of H.S.A. and hence it can be readily identified by 

typical firm level data, which has revenues but not output.  See Kasahara-Sugita (2020). 
 

• When applied to monopolistic competition with free-entry, it is easier under H.S.A. to ensure the existence and 
uniqueness of equilibrium, to characterize the equilibrium and to conduct comparative statics, because 

 
o For H.S.A., the interaction across products operates through only one aggregator in each sector. 
 An easy characterization of the free-entry equilibrium. 

o For HDIA and HIIA, the interaction across products operates through two aggregators in each sector, creating 
more room for the multiplicity and non-existence of equilibrium.   

 
In short, H.S.A. is 
• as tractable as translog, which is its special case; 
• as flexible as the Kimball aggregator, which is HDIA without endogenous range of differentiated products. 

 
 
 



©Kiminori Matsuyama, Homothetic Non-CES with Applications to MC 

Page 72 of 75 

 
 
 
 
 
 
 
 

Appendix 2:  Some Parametric Families of H.S.A. 
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Generalized Translog:   

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �1 −
𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝛽𝛽
��

𝜂𝜂

= 𝛾𝛾 �−
𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝑧𝑧̅
��

𝜂𝜂

;  𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1 

⟹ 𝜁𝜁(𝑧𝑧) = 1 +
𝜎𝜎 − 1

1 − 𝜎𝜎 − 1
𝜂𝜂 ln �𝑧𝑧𝛽𝛽�

= 1 −
𝜂𝜂

ln �𝑧𝑧𝑧𝑧̅�
> 1 

⟹ 𝜂𝜂𝑧𝑧𝜁𝜁′(𝑧𝑧) = [𝜁𝜁(𝑧𝑧) − 1]2 ⟹
𝑧𝑧𝜁𝜁′(𝑧𝑧)

[𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) =
1
𝜂𝜂
�1 −

1
𝜁𝜁(𝑧𝑧)� =

1

𝜂𝜂 − ln �𝑧𝑧𝑧𝑧̅�
 

satisfying the 2nd law but violating even the weak 3rd law. 
• CES is the limit case, as 𝜂𝜂 → ∞, while holding 𝛽𝛽 > 0 and 𝜎𝜎 > 1 fixed, so that 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒

𝜂𝜂
𝜎𝜎−1 → ∞. 

• Translog is the special case where 𝜂𝜂 = 1. 
• 𝑧𝑧 = 𝑍𝑍 �𝜓𝜓

𝐴𝐴
� is given as the inverse of 𝜂𝜂𝑧𝑧

𝜂𝜂−ln(𝑧𝑧 �̅�𝑧⁄ ) = 𝜓𝜓
𝐴𝐴

; 
• If 𝜂𝜂 ≥ 1, employment is globally decreasing in 𝑧𝑧;  
• If 𝜂𝜂 < 1, employment is hump-shaped with the peak, given by �̂�𝑧 𝑧𝑧̅⁄ = 𝜓𝜓�

(1−𝜂𝜂)�̅�𝑧𝐴𝐴
= exp �− 𝜂𝜂2

1−𝜂𝜂
� < 1, decreasing in 𝜂𝜂.  
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Constant Pass-Through (CoPaTh): Matsuyama-Ushchev (2020b). For 0 < 𝜌𝜌 < 1, 𝜎𝜎 > 1, 𝑧𝑧̅ ≡ 𝛽𝛽 � 𝜎𝜎
𝜎𝜎−1

�
𝜌𝜌

1−𝜌𝜌 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝜎𝜎
𝜌𝜌

1−𝜌𝜌 �1 − �
𝑧𝑧
𝑧𝑧̅
�
1−𝜌𝜌
𝜌𝜌 �

𝜌𝜌
1−𝜌𝜌

⟹ 1 −
1

𝜁𝜁(𝑧𝑧) = �
𝑧𝑧
𝑧𝑧̅
�
1−𝜌𝜌
𝜌𝜌 < 1 ⟹ ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) = −ℰ𝜁𝜁 (𝜁𝜁−1)⁄ (𝑧𝑧) =

1 − 𝜌𝜌
𝜌𝜌

> 0 

satisfying the 2nd law and the weak (but not strong) 3rd law.  Then, for 𝜓𝜓 𝐴𝐴⁄ < 𝑧𝑧̅, 

𝑝𝑝𝜓𝜓 = (𝑧𝑧̅𝐴𝐴)1−𝜌𝜌(𝜓𝜓)𝜌𝜌;        𝑍𝑍 �
𝜓𝜓
𝐴𝐴
� = (𝑧𝑧̅)1−𝜌𝜌 �

𝜓𝜓
𝐴𝐴
�
𝜌𝜌

;    

 𝜎𝜎 �
𝜓𝜓
𝐴𝐴
� =

1
1 − (𝜓𝜓 𝑧𝑧̅𝐴𝐴⁄ )1−𝜌𝜌 ;        𝜌𝜌 �

𝜓𝜓
𝐴𝐴
� = 𝜌𝜌 

𝑟𝑟 �
𝜓𝜓
𝐴𝐴
� =  𝛾𝛾𝜎𝜎

𝜌𝜌
1−𝜌𝜌 �1 − �

𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�

𝜌𝜌
1−𝜌𝜌

;   𝜋𝜋 �
𝜓𝜓
𝐴𝐴
� =  𝛾𝛾𝜎𝜎

𝜌𝜌
1−𝜌𝜌 �1 − �

𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�

1
1−𝜌𝜌

;   ℓ �
𝜓𝜓
𝐴𝐴
�

= 𝛾𝛾𝜎𝜎
𝜌𝜌

1−𝜌𝜌 �
𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�1 − �
𝜓𝜓
𝑧𝑧̅𝐴𝐴
�
1−𝜌𝜌

�

𝜌𝜌
1−𝜌𝜌

 

with  
• a constant pass-through rate, 0 < 𝜌𝜌 < 1. 

• Employment hump-shaped with �̂�𝑧 𝑧𝑧̅⁄ = (1 − 𝜌𝜌)
𝜌𝜌

1−𝜌𝜌 > 𝜓𝜓� 𝑧𝑧̅𝐴𝐴⁄ = (1 − 𝜌𝜌)
1

1−𝜌𝜌 , both decreasing in 𝜌𝜌. 

• CES is the limit case, as 𝜌𝜌 → 1, while holding 𝛽𝛽 > 0 and 𝜎𝜎 > 1 fixed, so that 𝜎𝜎(𝜓𝜓 𝐴𝐴⁄ ) → 𝜎𝜎;  𝑧𝑧̅ ≡ 𝛽𝛽 � 𝜎𝜎
𝜎𝜎−1

�
𝜌𝜌

1−𝜌𝜌 → ∞. 
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Power Elasticity of Markup Rate (Fréchet Inverse Markup Rate): For 𝜅𝜅 ≥ 0 and 𝜆𝜆 > 0. 
 

𝑠𝑠(𝑧𝑧) = exp ��
𝑐𝑐

𝑐𝑐 − exp �− 𝜅𝜅𝑧𝑧̅
−𝜆𝜆

𝜆𝜆 � exp �𝜅𝜅𝜉𝜉
−𝜆𝜆

𝜆𝜆 �

𝑑𝑑𝜉𝜉
𝜉𝜉

𝑧𝑧

𝑧𝑧0
� 

with either 𝑧𝑧̅ = ∞ and 𝑐𝑐 ≤ 1 or 𝑧𝑧̅ < ∞ and 𝑐𝑐 = 1.  Then,  

1 −
1

𝜁𝜁(𝑧𝑧) = 𝑐𝑐 exp �
𝜅𝜅𝑧𝑧̅−𝜆𝜆

𝜆𝜆
� exp �−

𝜅𝜅𝑧𝑧−𝜆𝜆

𝜆𝜆
� < 1 ⟹ ℰ1−1 𝜁𝜁⁄ (𝑧𝑧) = −ℰ𝜁𝜁 (𝜁𝜁−1)⁄ (𝑧𝑧) = 𝜅𝜅𝑧𝑧−𝜆𝜆 

satisfying the 2nd law and the strong 3rd law for 𝜅𝜅 > 0 and 𝜆𝜆 > 0.   
CES for 𝜅𝜅 = 0;  𝑧𝑧̅ = ∞;  𝑐𝑐 = 1 − 1

𝜎𝜎
; CoPaTh for 𝑧𝑧̅ < ∞;  𝑐𝑐 = 1; 𝜅𝜅 = 1−𝜌𝜌

𝜌𝜌
> 0, and 𝜆𝜆 → 0. 

• 𝜌𝜌 �𝜓𝜓
𝐴𝐴
� = 1

1+𝜅𝜅�𝑧𝑧𝑗𝑗�
−𝜆𝜆, with 𝑧𝑧𝜓𝜓 = 𝑍𝑍 �𝜓𝜓

𝐴𝐴
� given implicitly by 𝑐𝑐 exp �𝜅𝜅�̅�𝑧

−𝜆𝜆

𝜆𝜆
� 𝑧𝑧𝜓𝜓 exp �− 𝜅𝜅�𝑧𝑧𝑗𝑗�

−𝜆𝜆

𝜆𝜆
� ≡ 𝜓𝜓

𝐴𝐴
,  

• 𝜕𝜕
2 ln𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )
𝜕𝜕𝐴𝐴𝜕𝜕𝜓𝜓

⋚ 0 ⟺ (𝜅𝜅)
1
𝜆𝜆 ⋛ 𝑧𝑧𝜓𝜓 = 𝑍𝑍 �𝜓𝜓

𝐴𝐴
� ⟺ 𝜓𝜓

𝐴𝐴
⋚ (𝜅𝜅)

1
𝜆𝜆𝑐𝑐 exp �𝜅𝜅�̅�𝑧

−𝜆𝜆−1
𝜆𝜆

�; Log-sub(super)modular among more (less) 

efficient firms. In particular, if 𝑧𝑧̅ < (𝜅𝜅)
1
𝜆𝜆, 𝜕𝜕

2 ln𝜌𝜌(𝜓𝜓 𝐴𝐴⁄ )
𝜕𝜕𝐴𝐴𝜕𝜕𝜓𝜓

< 0 for all 𝜓𝜓 𝐴𝐴⁄ < 𝑍𝑍(𝜓𝜓 𝐴𝐴⁄ ) < 𝑧𝑧̅ < ∞. 

• Employment hump-shaped with the peak at �̂�𝑧 = 𝑍𝑍 �𝜓𝜓
�

𝐴𝐴
� < 𝑧𝑧̅, given implicitly by  

𝑐𝑐 �1 +
�̂�𝑧𝜆𝜆

𝜅𝜅
� exp �−

𝜅𝜅�̂�𝑧−𝜆𝜆

𝜆𝜆
� exp �

𝜅𝜅𝑧𝑧̅−𝜆𝜆

𝜆𝜆
� = 1 ⟺ �1 +

�̂�𝑧𝜆𝜆

𝜅𝜅
� �̂�𝑧 =

𝜓𝜓�
𝐴𝐴

.  
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